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Feature-rich Shared Task Submissions

# Feature-rich

2012 WMT 0
IWSLT 1

2013 WMT 2 ?
IWSLT TBD
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Speculation: Entrenchment Of MERT

Feature-rich on small tuning
sets?

Implementation complexity

Open source availability

Top-selling phone of 2003
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Motivation: Why Feature-Rich MT?

Make MT more like other machine learning settings

Features for specific errors

Domain adaptation
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Motivation: Why Online MT Tuning?

Search: decode more often

Better solutions
See: [Liang and Klein 2009]

Computer-aided translation:
incremental updating
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Benefits Of Our Method

Fast and scalable

Adapts to dense/sparse feature mix

Not complicated
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Online Algorithm Overview

Updating with an adaptive learning rate

Automatic feature selection via L1 regularization

Loss function: Pairwise ranking
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Notation

t time/update step

t weight vector in Rn

η learning rate

ℓt() loss of t’th example

zt−1 ∈ ∂ℓt(t−1) subgradient set (subdifferential)

zt−1 = ∇ℓt(t−1) for differentiable loss functions

r() regularization function
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Warm-up: Stochastic Gradient Descent

Per-instance update:

t =t−1 − ηzt−1

Issue #1: learning rate schedule

η / t ?

η /
p
t ?

η / (1+ γt) ? Yuck.
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Warm-up: Stochastic Gradient Descent

SGD update:
t =t−1 − ηzt−1

Issue #2: same step size for every coordinate

Intuitively, we might want:

Frequent feature: small steps e.g. η / t

Rare feature: large steps e.g. η /
p
t
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SGD: Learning Rate Adaptation

SGD update:
t =t−1 − ηzt−1

Scale learning rate with A−1 ∈ Rn×n:

t =t−1 − ηA−1zt−1

Choices:

A−1 =  (SGD)

A−1 = H−1 (Batch: Newton step)
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AdaGrad Duchi et al. 2011

Update:
t =t−1 − ηA−1zt−1

Set A−1 = G−1/2t :

Gt = Gt−1 + zt−1 · z>t−1

14



AdaGrad: Approximations and Intuition

For high-dimensional t, use diagonal Gt

t =t−1 − ηG−1/2t
zt−1

Intuition:

1/
p
t schedule on constant gradient

Small steps for frequent features

Big steps for rare features

[Duchi et al. 2011]
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AdaGrad vs. SGD: 2D Illustration
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Feature Selection

Traditional approach: frequency cutoffs

Unattractive for large tuning sets (e.g. bitext)

More principled: L1 regularization

r() =
∑



||
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Feature Selection: FOBOS
Two-step update:

t− 12
=t−1 − ηzt−1 (1)

t = rgmin














1

2








−t− 12










2

︸ ︷︷ ︸

proximal term

+ λ · r()
︸ ︷︷ ︸

regularization













(2)

[Duchi and Singer 2009]

Extension: AdaGrad update in step (1)
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Feature Selection: FOBOS

For L1, FOBOS becomes soft thresholding:

t = sign(t− 12
)
h
�

�

�t− 12

�

�

�− λ
i

+

Squared-L2 also has a simple form
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Feature Selection: Lazy Regularization

Lazy updating: only update active coordinates

Big speedup in MT setting

Easy with FOBOS:

t′
j

: last update of dimension j

Use λ(t − t′
j
)
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AdaGrad+FOBOS: Full Algorithm

1. Additive update: Gt

2. Additive update: t− 12

3. Closed-form regularization: t

Not complicated

Very fast
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Recap: Pairwise Ranking

For derivation d, feature map ϕ(d), references e1:k

Metric: B(d, e1:k) (e.g. BLEU+1)

Model score: M(d) = · ϕ(d)

Pairwise consistency:

M(d+) > M(d−) ⇐⇒ B
�

d+, e
1:k
�

> B
�

d−, e
1:k
�

[Hopkins and May 2011]
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Loss Function: Pairwise Ranking

M(d+) > M(d−) ⇐⇒  · (ϕ(d+)− ϕ(d−)) > 0

Loss formulation:

Difference vector:  = ϕ(d+)− ϕ(d−)

Find  so that  ·  > 0

Binary classification problem between  and −

Logistic loss: convex, differentiable

[Hopkins and May 2011]
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Parallelization

Online algorithms are inherently sequential

Out-of-order updating:

7 =6 − ηz4
8 =7 − ηz6
9 =8 − ηz5

Low-latency regret bound: O(
p
T) [Langford et al. 2009]
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Translation Quality Experiments

Arabic-English (Ar–En) and Chinese-English (Zh–En)

Newswire and mixed-genre experiments

BOLT bitexts: data up to 2012

Bilingual Monolingual

Sentences Tokens Tokens

Ar–En 6.6M 375M
990M

Zh–En 9.3M 538M

25



MT System

Phrase-based MT: Phrasal
[Cer et al. 2010]

Dense baseline: MERT
Cer et al. 2008 line search

Accumulates n-best lists

Random starting points, etc.

26



Feature-Rich Baseline: PRO

Pairwise Ranking Optimization (PRO)

Batch log loss minimization

Phrasal implementation:

L-BFGS with L2 regularization

[Hopkins and May 2011]

Sanity check: Moses PRO and kb-MIRA (batch)
implementations
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Dense Features

8 Hierarchical lex. reordering

5 Moses phrase table features

1 Rule bitext count

1 Unique rule indicator

1 Word penalty

1 Linear distortion

1 LM

1 Unknown word

19
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Sparse Feature Templates

Discriminative Phrase Table (PT)

Rule indicator: 1

�

ZA
	

�
	
®Ë @ l .

×A
	
KQK. ⇒ space program

�

Discriminative Alignments (AL)

Source word deletion: 1

�

ZA
	

�
	
®Ë @⇒

�

Word alignments: 1

�

ZA
	

�
	
®Ë @⇒ space

�

Discriminative Lex. Reordering (LO)

Phrase orientation: 1

�

swap(ZA
	

�
	
®Ë @⇒ space)

�
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Evaluation: NIST OpenMT

Small tuning set: MT06

“Large” tuning set: MT0568 (≈4200 segments)

BLEU-4 uncased, Four references

Paper: mixed genre (bitext) experiments
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Results: Small Tuning Set (Dense)

Ar–En Zh–En

Tune Test Avg. Tune Test Avg.

MERT 45.08 50.51 33.73 34.49

This paper 43.16 50.11 32.20 35.25

31



Results: Add More Features

Ar–En Zh–En

Tune Test Avg. Tune Test Avg.

MERT—Dense 45.08 50.51 33.73 34.49

This paper +PT 50.61 50.52 34.92 35.12

This paper +All 60.85 50.97 39.43 35.31

(MT06 tuning set)
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Results: Add More Data

Ar–En Zh–En

Test Avg. Test Avg.

MERT—mt06 50.51 34.49

MERT—mt0568 50.74 34.55

This paper

+All—mt06 50.97 35.31

+All—mt0568 52.34 +1.60 36.61 +2.06

PRO+All worse than MERT—mt0568
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Analysis: Zh–En MT06 Tuning

(16 threads) Epochs Min/epoch

MERT Dense 22 180

PRO +PT 25 35

kb-MIRA* +PT 26 25

This paper +PT 10 10

PRO +All 13 100

This paper +All 5 15

MERT—mt0568 tuning takes about 5 days
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Analysis: Runtime

Online regret bounds depend on # updates

Large datasets: more updates per epoch

Fewer epochs to converge

Lazy updating helps:

t ≈ 100k features

zt−1 ≈ 500 features
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Analysis: Reordering

Arabic matrix clauses often verb-initial

Manually selected 208 verb-initial segments (MT09)

32 differed for MERT–Dense vs. +All
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Analysis: Reordering

+All correct 18 56.3%

MERT–Dense correct 4 12.5%

Both wrong 10 31.3%

32

ref: the newspaper and television reported

MERT she said the newspaper and television

+All television and newspaper said
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Analysis: Domain Adaptation

l .
×A

	
KQK. ⇒ program, programme

# bitext–5k # MT0568

programme 185 0

program 19 449

+PT rules: programme 353 79

+PT rules: program 9 31
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Caveats and Next Steps

Single-reference setting

BLEU+1 is unreliable

Lexicalized features cause overfitting

Current work

Bitext tuning

Different loss function
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Conclusion

Fast, adaptive, online tuning for MT

Easy to implement

Works as well as MERT for Dense

Sane feature engineering
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Fast and Adaptive Online Training

of Feature-Rich Translation Models

Spence Green Sida Wang

Daniel Cer Christopher D. Manning

Stanford University

Try the code in Phrasal:

nlp.stanford.edu/software/phrasal/



En–De Learning Curve
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Sparse Features: Negative Results

Discriminative LM Jane called Sally

Phrase boundary features Jane || called Sally

Alignment constellation 1-0 0-1

Target word insertion Jane called the Sally
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