
Fast and Adaptive Online Training

of Feature-Rich Translation Models

Spence Green Sida Wang

Daniel Cer Christopher D. Manning

Stanford University

ACL 2013

Feature-Rich Research Industry/Evaluations
Liang et al. 2006

Tillmann and Zhang 2006

Arun and Koehn 2007

Ittycheriah and Roukos 2007

Watanabe et al. 2007

Chiang et al. 2008; Chiang et al. 2009 n-best/lattice MERT
Haddow et al. 2011

Hopkins and May 2011 MIRA (ISI)
Xiang and Ittycheriah 2011

Cherry and Foster 2012

Chiang 2012

Gimpel 2012

Simianer et al. 2012

Watanabe 2012

Feature-Rich Research Industry/Evaluations
Liang et al. 2006

Tillmann and Zhang 2006

Arun and Koehn 2007

Ittycheriah and Roukos 2007

Watanabe et al. 2007

Chiang et al. 2008; Chiang et al. 2009 n-best/lattice MERT
Haddow et al. 2011

Hopkins and May 2011 MIRA (ISI)
Xiang and Ittycheriah 2011

Cherry and Foster 2012

Chiang 2012

Gimpel 2012

Simianer et al. 2012

Watanabe 2012

Feature-rich Shared Task Submissions

Feature-rich

2012 WMT 0
IWSLT 1

2013 WMT 2 ?
IWSLT TBD

4

Speculation: Entrenchment Of MERT

Feature-rich on small tuning
sets?

Implementation complexity

Open source availability

Top-selling phone of 2003

5

Speculation: Entrenchment Of MERT

Feature-rich on small tuning
sets?

Implementation complexity

Open source availability

Top-selling phone of 2003

5

Motivation: Why Feature-Rich MT?

Make MT more like other machine learning settings

Features for specific errors

Domain adaptation

6

Motivation: Why Online MT Tuning?

Search: decode more often

Better solutions
See: [Liang and Klein 2009]

Computer-aided translation:
incremental updating

7

Benefits Of Our Method

Fast and scalable

Adapts to dense/sparse feature mix

Not complicated

8

Online Algorithm Overview

Updating with an adaptive learning rate

Automatic feature selection via L1 regularization

Loss function: Pairwise ranking

9

Notation

t time/update step

t weight vector in Rn

η learning rate

ℓt() loss of t’th example

zt−1 ∈ ∂ℓt(t−1) subgradient set (subdifferential)

zt−1 = ∇ℓt(t−1) for differentiable loss functions

r() regularization function

10

Notation

t time/update step

t weight vector in Rn

η learning rate

ℓt() loss of t’th example

zt−1 ∈ ∂ℓt(t−1) subgradient set (subdifferential)

zt−1 = ∇ℓt(t−1) for differentiable loss functions

r() regularization function

10

Notation

t time/update step

t weight vector in Rn

η learning rate

ℓt() loss of t’th example

zt−1 ∈ ∂ℓt(t−1) subgradient set (subdifferential)

zt−1 = ∇ℓt(t−1) for differentiable loss functions

r() regularization function

10

Notation

t time/update step

t weight vector in Rn

η learning rate

ℓt() loss of t’th example

zt−1 ∈ ∂ℓt(t−1) subgradient set (subdifferential)

zt−1 = ∇ℓt(t−1) for differentiable loss functions

r() regularization function

10

Notation

t time/update step

t weight vector in Rn

η learning rate

ℓt() loss of t’th example

zt−1 ∈ ∂ℓt(t−1) subgradient set (subdifferential)

zt−1 = ∇ℓt(t−1) for differentiable loss functions

r() regularization function

10

Notation

t time/update step

t weight vector in Rn

η learning rate

ℓt() loss of t’th example

zt−1 ∈ ∂ℓt(t−1) subgradient set (subdifferential)

zt−1 = ∇ℓt(t−1) for differentiable loss functions

r() regularization function

10

Notation

t time/update step

t weight vector in Rn

η learning rate

ℓt() loss of t’th example

zt−1 ∈ ∂ℓt(t−1) subgradient set (subdifferential)

zt−1 = ∇ℓt(t−1) for differentiable loss functions

r() regularization function

10

Warm-up: Stochastic Gradient Descent

Per-instance update:

t =t−1 − ηzt−1

Issue #1: learning rate schedule

η / t ?

η /
p
t ?

η / (1+ γt) ? Yuck.

11

Warm-up: Stochastic Gradient Descent

Per-instance update:

t =t−1 − ηzt−1

Issue #1: learning rate schedule

η / t ?

η /
p
t ?

η / (1+ γt) ? Yuck.

11

Warm-up: Stochastic Gradient Descent

Per-instance update:

t =t−1 − ηzt−1

Issue #1: learning rate schedule

η / t ?

η /
p
t ?

η / (1+ γt) ? Yuck.

11

Warm-up: Stochastic Gradient Descent

Per-instance update:

t =t−1 − ηzt−1

Issue #1: learning rate schedule

η / t ?

η /
p
t ?

η / (1+ γt) ? Yuck.

11

Warm-up: Stochastic Gradient Descent

SGD update:
t =t−1 − ηzt−1

Issue #2: same step size for every coordinate

Intuitively, we might want:

Frequent feature: small steps e.g. η / t

Rare feature: large steps e.g. η /
p
t

12

Warm-up: Stochastic Gradient Descent

SGD update:
t =t−1 − ηzt−1

Issue #2: same step size for every coordinate

Intuitively, we might want:

Frequent feature: small steps e.g. η / t

Rare feature: large steps e.g. η /
p
t

12

SGD: Learning Rate Adaptation

SGD update:
t =t−1 − ηzt−1

Scale learning rate with A−1 ∈ Rn×n:

t =t−1 − ηA−1zt−1

Choices:

A−1 =  (SGD)

A−1 = H−1 (Batch: Newton step)

13

SGD: Learning Rate Adaptation

SGD update:
t =t−1 − ηzt−1

Scale learning rate with A−1 ∈ Rn×n:

t =t−1 − ηA−1zt−1

Choices:

A−1 =  (SGD)

A−1 = H−1 (Batch: Newton step)

13

SGD: Learning Rate Adaptation

SGD update:
t =t−1 − ηzt−1

Scale learning rate with A−1 ∈ Rn×n:

t =t−1 − ηA−1zt−1

Choices:

A−1 =  (SGD)

A−1 = H−1 (Batch: Newton step)

13

AdaGrad Duchi et al. 2011

Update:
t =t−1 − ηA−1zt−1

Set A−1 = G−1/2t :

Gt = Gt−1 + zt−1 · z>t−1

14

AdaGrad: Approximations and Intuition

For high-dimensional t, use diagonal Gt

t =t−1 − ηG−1/2t
zt−1

Intuition:

1/
p
t schedule on constant gradient

Small steps for frequent features

Big steps for rare features

[Duchi et al. 2011]

15

AdaGrad: Approximations and Intuition

For high-dimensional t, use diagonal Gt

t =t−1 − ηG−1/2t
zt−1

Intuition:

1/
p
t schedule on constant gradient

Small steps for frequent features

Big steps for rare features

[Duchi et al. 2011]

15

AdaGrad vs. SGD: 2D Illustration

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

SGD

AdaGrad

16

Feature Selection

Traditional approach: frequency cutoffs

Unattractive for large tuning sets (e.g. bitext)

More principled: L1 regularization

r() =
∑



||

17

Feature Selection

Traditional approach: frequency cutoffs

Unattractive for large tuning sets (e.g. bitext)

More principled: L1 regularization

r() =
∑



||

17

Feature Selection: FOBOS
Two-step update:

t− 12
=t−1 − ηzt−1 (1)

t = rgmin














1

2

−t− 12

2

︸ ︷︷ ︸

proximal term

+ λ · r()
︸ ︷︷ ︸

regularization













(2)

[Duchi and Singer 2009]

Extension: AdaGrad update in step (1)

18

Feature Selection: FOBOS
Two-step update:

t− 12
=t−1 − ηzt−1 (1)

t = rgmin














1

2

−t− 12

2

︸ ︷︷ ︸

proximal term

+ λ · r()
︸ ︷︷ ︸

regularization













(2)

[Duchi and Singer 2009]

Extension: AdaGrad update in step (1)
18

Feature Selection: FOBOS

For L1, FOBOS becomes soft thresholding:

t = sign(t− 12
)
h
�

�

�t− 12

�

�

�− λ
i

+

Squared-L2 also has a simple form

19

Feature Selection: FOBOS

For L1, FOBOS becomes soft thresholding:

t = sign(t− 12
)
h
�

�

�t− 12

�

�

�− λ
i

+

Squared-L2 also has a simple form

19

Feature Selection: Lazy Regularization

Lazy updating: only update active coordinates

Big speedup in MT setting

Easy with FOBOS:

t′
j

: last update of dimension j

Use λ(t − t′
j
)

20

Feature Selection: Lazy Regularization

Lazy updating: only update active coordinates

Big speedup in MT setting

Easy with FOBOS:

t′
j

: last update of dimension j

Use λ(t − t′
j
)

20

AdaGrad+FOBOS: Full Algorithm

1. Additive update: Gt

2. Additive update: t− 12

3. Closed-form regularization: t

Not complicated

Very fast

21

AdaGrad+FOBOS: Full Algorithm

1. Additive update: Gt

2. Additive update: t− 12

3. Closed-form regularization: t

Not complicated

Very fast

21

AdaGrad+FOBOS: Full Algorithm

1. Additive update: Gt

2. Additive update: t− 12

3. Closed-form regularization: t

Not complicated

Very fast

21

AdaGrad+FOBOS: Full Algorithm

1. Additive update: Gt

2. Additive update: t− 12

3. Closed-form regularization: t

Not complicated

Very fast

21

AdaGrad+FOBOS: Full Algorithm

1. Additive update: Gt

2. Additive update: t− 12

3. Closed-form regularization: t

Not complicated

Very fast

21

Recap: Pairwise Ranking

For derivation d, feature map ϕ(d), references e1:k

Metric: B(d, e1:k) (e.g. BLEU+1)

Model score: M(d) = · ϕ(d)

Pairwise consistency:

M(d+) > M(d−) ⇐⇒ B
�

d+, e
1:k
�

> B
�

d−, e
1:k
�

[Hopkins and May 2011]

22

Recap: Pairwise Ranking

For derivation d, feature map ϕ(d), references e1:k

Metric: B(d, e1:k) (e.g. BLEU+1)

Model score: M(d) = · ϕ(d)

Pairwise consistency:

M(d+) > M(d−) ⇐⇒ B
�

d+, e
1:k
�

> B
�

d−, e
1:k
�

[Hopkins and May 2011]

22

Loss Function: Pairwise Ranking

M(d+) > M(d−) ⇐⇒  · (ϕ(d+)− ϕ(d−)) > 0

Loss formulation:

Difference vector:  = ϕ(d+)− ϕ(d−)

Find  so that  ·  > 0

Binary classification problem between  and −

Logistic loss: convex, differentiable

[Hopkins and May 2011]

23

Loss Function: Pairwise Ranking

M(d+) > M(d−) ⇐⇒  · (ϕ(d+)− ϕ(d−)) > 0

Loss formulation:

Difference vector:  = ϕ(d+)− ϕ(d−)

Find  so that  ·  > 0

Binary classification problem between  and −

Logistic loss: convex, differentiable

[Hopkins and May 2011]

23

Loss Function: Pairwise Ranking

M(d+) > M(d−) ⇐⇒  · (ϕ(d+)− ϕ(d−)) > 0

Loss formulation:

Difference vector:  = ϕ(d+)− ϕ(d−)

Find  so that  ·  > 0

Binary classification problem between  and −

Logistic loss: convex, differentiable

[Hopkins and May 2011]

23

Parallelization

Online algorithms are inherently sequential

Out-of-order updating:

7 =6 − ηz4
8 =7 − ηz6
9 =8 − ηz5

Low-latency regret bound: O(
p
T) [Langford et al. 2009]

24

Parallelization

Online algorithms are inherently sequential

Out-of-order updating:

7 =6 − ηz4
8 =7 − ηz6
9 =8 − ηz5

Low-latency regret bound: O(
p
T) [Langford et al. 2009]

24

Parallelization

Online algorithms are inherently sequential

Out-of-order updating:

7 =6 − ηz4
8 =7 − ηz6
9 =8 − ηz5

Low-latency regret bound: O(
p
T) [Langford et al. 2009]

24

Translation Quality Experiments

Arabic-English (Ar–En) and Chinese-English (Zh–En)

Newswire and mixed-genre experiments

BOLT bitexts: data up to 2012

Bilingual Monolingual

Sentences Tokens Tokens

Ar–En 6.6M 375M
990M

Zh–En 9.3M 538M

25

MT System

Phrase-based MT: Phrasal
[Cer et al. 2010]

Dense baseline: MERT
Cer et al. 2008 line search

Accumulates n-best lists

Random starting points, etc.

26

Feature-Rich Baseline: PRO

Pairwise Ranking Optimization (PRO)

Batch log loss minimization

Phrasal implementation:

L-BFGS with L2 regularization

[Hopkins and May 2011]

Sanity check: Moses PRO and kb-MIRA (batch)
implementations

27

Feature-Rich Baseline: PRO

Pairwise Ranking Optimization (PRO)

Batch log loss minimization

Phrasal implementation:

L-BFGS with L2 regularization

[Hopkins and May 2011]

Sanity check: Moses PRO and kb-MIRA (batch)
implementations

27

Dense Features

8 Hierarchical lex. reordering

5 Moses phrase table features

1 Rule bitext count

1 Unique rule indicator

1 Word penalty

1 Linear distortion

1 LM

1 Unknown word

19

28

Dense Features

8 Hierarchical lex. reordering

5 Moses phrase table features

1 Rule bitext count

1 Unique rule indicator

1 Word penalty

1 Linear distortion

1 LM

1 Unknown word

19

28

Dense Features

8 Hierarchical lex. reordering

5 Moses phrase table features

1 Rule bitext count

1 Unique rule indicator

1 Word penalty

1 Linear distortion

1 LM

1 Unknown word

19

28

Sparse Feature Templates

Discriminative Phrase Table (PT)

Rule indicator: 1

�

ZA
	

�
	
®Ë @ l .

×A
	
KQK. ⇒ space program

�

Discriminative Alignments (AL)

Source word deletion: 1

�

ZA
	

�
	
®Ë @⇒

�

Word alignments: 1

�

ZA
	

�
	
®Ë @⇒ space

�

Discriminative Lex. Reordering (LO)

Phrase orientation: 1

�

swap(ZA
	

�
	
®Ë @⇒ space)

�

29

Sparse Feature Templates

Discriminative Phrase Table (PT)

Rule indicator: 1

�

ZA
	

�
	
®Ë @ l .

×A
	
KQK. ⇒ space program

�

Discriminative Alignments (AL)

Source word deletion: 1

�

ZA
	

�
	
®Ë @⇒

�

Word alignments: 1

�

ZA
	

�
	
®Ë @⇒ space

�

Discriminative Lex. Reordering (LO)

Phrase orientation: 1

�

swap(ZA
	

�
	
®Ë @⇒ space)

�

29

Sparse Feature Templates

Discriminative Phrase Table (PT)

Rule indicator: 1

�

ZA
	

�
	
®Ë @ l .

×A
	
KQK. ⇒ space program

�

Discriminative Alignments (AL)

Source word deletion: 1

�

ZA
	

�
	
®Ë @⇒

�

Word alignments: 1

�

ZA
	

�
	
®Ë @⇒ space

�

Discriminative Lex. Reordering (LO)

Phrase orientation: 1

�

swap(ZA
	

�
	
®Ë @⇒ space)

�

29

Evaluation: NIST OpenMT

Small tuning set: MT06

“Large” tuning set: MT0568 (≈4200 segments)

BLEU-4 uncased, Four references

Paper: mixed genre (bitext) experiments

30

Evaluation: NIST OpenMT

Small tuning set: MT06

“Large” tuning set: MT0568 (≈4200 segments)

BLEU-4 uncased, Four references

Paper: mixed genre (bitext) experiments

30

Results: Small Tuning Set (Dense)

Ar–En Zh–En

Tune Test Avg. Tune Test Avg.

MERT 45.08 50.51 33.73 34.49

This paper 43.16 50.11 32.20 35.25

31

Results: Add More Features

Ar–En Zh–En

Tune Test Avg. Tune Test Avg.

MERT—Dense 45.08 50.51 33.73 34.49

This paper +PT 50.61 50.52 34.92 35.12

This paper +All 60.85 50.97 39.43 35.31

(MT06 tuning set)

32

Results: Add More Features

Ar–En Zh–En

Tune Test Avg. Tune Test Avg.

MERT—Dense 45.08 50.51 33.73 34.49

This paper +PT 50.61 50.52 34.92 35.12

This paper +All 60.85 50.97 39.43 35.31

(MT06 tuning set)

32

Results: Add More Data

Ar–En Zh–En

Test Avg. Test Avg.

MERT—mt06 50.51 34.49

MERT—mt0568 50.74 34.55

This paper

+All—mt06 50.97 35.31

+All—mt0568 52.34 +1.60 36.61 +2.06

PRO+All worse than MERT—mt0568

33

Results: Add More Data

Ar–En Zh–En

Test Avg. Test Avg.

MERT—mt06 50.51 34.49

MERT—mt0568 50.74 34.55

This paper

+All—mt06 50.97 35.31

+All—mt0568 52.34 +1.60 36.61 +2.06

PRO+All worse than MERT—mt0568

33

Results: Add More Data

Ar–En Zh–En

Test Avg. Test Avg.

MERT—mt06 50.51 34.49

MERT—mt0568 50.74 34.55

This paper

+All—mt06 50.97 35.31

+All—mt0568 52.34 +1.60 36.61 +2.06

PRO+All worse than MERT—mt0568

33

Results: Add More Data

Ar–En Zh–En

Test Avg. Test Avg.

MERT—mt06 50.51 34.49

MERT—mt0568 50.74 34.55

This paper

+All—mt06 50.97 35.31

+All—mt0568 52.34 +1.60 36.61 +2.06

PRO+All worse than MERT—mt0568

33

Analysis: Zh–En MT06 Tuning

(16 threads) Epochs Min/epoch

MERT Dense 22 180

PRO +PT 25 35

kb-MIRA* +PT 26 25

This paper +PT 10 10

PRO +All 13 100

This paper +All 5 15

MERT—mt0568 tuning takes about 5 days

34

Analysis: Zh–En MT06 Tuning

(16 threads) Epochs Min/epoch

MERT Dense 22 180

PRO +PT 25 35

kb-MIRA* +PT 26 25

This paper +PT 10 10

PRO +All 13 100

This paper +All 5 15

MERT—mt0568 tuning takes about 5 days

34

Analysis: Zh–En MT06 Tuning

(16 threads) Epochs Min/epoch

MERT Dense 22 180

PRO +PT 25 35

kb-MIRA* +PT 26 25

This paper +PT 10 10

PRO +All 13 100

This paper +All 5 15

MERT—mt0568 tuning takes about 5 days

34

Analysis: Zh–En MT06 Tuning

(16 threads) Epochs Min/epoch

MERT Dense 22 180

PRO +PT 25 35

kb-MIRA* +PT 26 25

This paper +PT 10 10

PRO +All 13 100

This paper +All 5 15

MERT—mt0568 tuning takes about 5 days

34

Analysis: Runtime

Online regret bounds depend on # updates

Large datasets: more updates per epoch

Fewer epochs to converge

Lazy updating helps:

t ≈ 100k features

zt−1 ≈ 500 features

35

Analysis: Runtime

Online regret bounds depend on # updates

Large datasets: more updates per epoch

Fewer epochs to converge

Lazy updating helps:

t ≈ 100k features

zt−1 ≈ 500 features

35

Analysis: Reordering

Arabic matrix clauses often verb-initial

Manually selected 208 verb-initial segments (MT09)

32 differed for MERT–Dense vs. +All

36

Analysis: Reordering

Arabic matrix clauses often verb-initial

Manually selected 208 verb-initial segments (MT09)

32 differed for MERT–Dense vs. +All

36

Analysis: Reordering

Arabic matrix clauses often verb-initial

Manually selected 208 verb-initial segments (MT09)

32 differed for MERT–Dense vs. +All

36

Analysis: Reordering

+All correct 18 56.3%

MERT–Dense correct 4 12.5%

Both wrong 10 31.3%

32

ref: the newspaper and television reported

MERT she said the newspaper and television

+All television and newspaper said

37

Analysis: Reordering

+All correct 18 56.3%

MERT–Dense correct 4 12.5%

Both wrong 10 31.3%

32

ref: the newspaper and television reported

MERT she said the newspaper and television

+All television and newspaper said

37

Analysis: Domain Adaptation

l .
×A

	
KQK. ⇒ program, programme

bitext–5k # MT0568

programme 185 0

program 19 449

+PT rules: programme 353 79

+PT rules: program 9 31

38

Analysis: Domain Adaptation

l .
×A

	
KQK. ⇒ program, programme

bitext–5k # MT0568

programme 185 0

program 19 449

+PT rules: programme 353 79

+PT rules: program 9 31

38

Analysis: Domain Adaptation

l .
×A

	
KQK. ⇒ program, programme

bitext–5k # MT0568

programme 185 0

program 19 449

+PT rules: programme 353 79

+PT rules: program 9 31

38

Caveats and Next Steps

Single-reference setting

BLEU+1 is unreliable

Lexicalized features cause overfitting

Current work

Bitext tuning

Different loss function

39

Caveats and Next Steps

Single-reference setting

BLEU+1 is unreliable

Lexicalized features cause overfitting

Current work

Bitext tuning

Different loss function

39

Conclusion

Fast, adaptive, online tuning for MT

Easy to implement

Works as well as MERT for Dense

Sane feature engineering

40

Conclusion

Fast, adaptive, online tuning for MT

Easy to implement

Works as well as MERT for Dense

Sane feature engineering

40

Conclusion

Fast, adaptive, online tuning for MT

Easy to implement

Works as well as MERT for Dense

Sane feature engineering

40

Conclusion

Fast, adaptive, online tuning for MT

Easy to implement

Works as well as MERT for Dense

Sane feature engineering

40

Fast and Adaptive Online Training

of Feature-Rich Translation Models

Spence Green Sida Wang

Daniel Cer Christopher D. Manning

Stanford University

Try the code in Phrasal:

nlp.stanford.edu/software/phrasal/

En–De Learning Curve

●

●

●
● ● ● ● ● ● ●

●

●

● ●
●

●
●

●
●

●

7.5

10.0

12.5

15.0

17.5

1 2 3 4 5 6 7 8 9 10
Epoch

B
LE

U
 n

ew
te

st
20

08
−

20
11

Model
●

●

dense
feature−rich

42

Sparse Features: Negative Results

Discriminative LM Jane called Sally

Phrase boundary features Jane || called Sally

Alignment constellation 1-0 0-1

Target word insertion Jane called the Sally

43

	Introduction and Motivation
	Method
	Evaluation
	Analysis
	Conclusion
	Extra Slides

