Feature Noising

Sida Wang, joint work with
Part 1: Stefan Wager, Percy Liang
Part 2: Mengqiu Wang, Chris Manning, Percy Liang, Stefan Wager
Outline

• Part 0: Some backgrounds
• Part 1: Dropout as adaptive regularization
 • with applications to semi-supervised learning
 • joint work with Stefan Wager and Percy
• Part 2: Applications to structured prediction using CRFs
 • when the log-partition function cannot be easily computed
 • joint work with Mengqiu, Chris, Percy and Stefan Wager
The basics of dropout training

• Introduced by Hinton et al. in “Improving neural networks by preventing co-adaptation of feature detectors”

• For each example, randomly select features
 • zero them
 • compute the gradient, make an update
 • repeat
Empirically successful

- Dropout is important in some recent successes
 - won the ImageNet challenge [Krizhevsky et al., 2012]
 - won the Merck challenge [Dahl et al., 2012]

- Improved performance on standard datasets
 - images: MNIST, CIFAR, ImageNet, etc.
 - document classification: Reuters, IMDB, Rotten Tomatoes, etc.
 - speech: TIMIT, GlobalPhone, etc.
Lots of related works already

Variants
- DropConnect [Wan et al., 2013]
- Maxout networks [Goodfellow et al., 2013]

Analytical integration
- Fast Dropout [Wang and Manning, 2013]
- Marginalized Corrupted Features [van der Maaten et al., 2013]

Many other works report empirical gains
Outline

• Part 0: Some backgrounds

• Part 1: Dropout as adaptive regularization
 • with applications to semi-supervised learning

• Part 2: Applications to structured prediction using CRFs
 • when the log-partition function cannot be easily computed
Theoretical understanding?

• **Dropout as adaptive regularization**
 • feature noising -> interpretable penalty term

\[
\text{Loss}(\text{Dropout}(\text{data})) = \text{Loss(} data \text{)} + \text{Regularizer(} data \text{)}
\]

• **Semi-supervised learning**
 • feature dependent, label independent regularizer:

\[
\text{Regularizer(} \text{Unlabeled data} \text{)}
\]
Dropout for Log-linear Models

- Log likelihood (e.g., softmax classification):
 \[
 \log p(y|x; \theta) = x^T \theta_y - A(x^T \theta)
 \]
 \[
 \theta = [\theta_1, \theta_2, \ldots, \theta_K]
 \]
Dropout for Log-linear Models

- Log likelihood (e.g., softmax classification):
 \[
 \log p(y|x; \theta) = x^T \theta_y - A(x^T \theta)
 \]
 \[
 \theta = [\theta_1, \theta_2, \ldots, \theta_K]
 \]

- Dropout:
 \[
 \tilde{x}_j = \begin{cases}
 2x_j & \text{with } p=0.5 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 \[
 \mathbb{E}[\tilde{x}] = x
 \]

- Dropout objective:
 \[
 \mathbb{E}[\log p(y|\tilde{x}; \theta)] = \mathbb{E}[\tilde{x}^T \theta_y] - \mathbb{E}[A(\tilde{x}^T \theta)]
 \]
 \[
 \text{Loss(Dropout(data))} = \text{Loss(data)} + \text{Regularizer(data)}
 \]
Dropout for Log-linear Models

- Log likelihood (e.g., softmax classification):
 \[
 \log p(y|x; \theta) = x^T \theta_y - A(x^T \theta)
 \]
 \[
 \theta = [\theta_1, \theta_2, \ldots, \theta_K]
 \]

- Dropout:
 \[
 \tilde{x}_j = \begin{cases}
 2x_j & \text{with } p=0.5 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 \[
 \mathbb{E}[\tilde{x}] = x
 \]

- Dropout objective:
 \[
 \mathbb{E}[\log p(y|\tilde{x}; \theta)] = \mathbb{E}[\tilde{x}^T \theta_y] - \mathbb{E}[A(\tilde{x}^T \theta)]
 \]
 \[
 -\text{Loss(Dropout(data))}
 \]
 \[
 \text{Loss(data)} + \text{Regularizer(data)}
 \]
Dropout for Log-linear Models

• We can rewrite the dropout log-likelihood

\[
\mathbb{E}[\log p(y|\tilde{x}; \theta)] = \mathbb{E}[\tilde{x}^T \theta_y] - \mathbb{E}[A(\tilde{x}^T \theta)]
\]

\[
\log p(y|x; \theta) = x^T \theta_y - A(x^T \theta)
\]

\[
\mathbb{E}[\log p(y|\tilde{x}; \theta)] = \log p(y|x; \theta) - (\mathbb{E}[A(\tilde{x}^T \theta)] - A(x^T \theta))
\]

-\text{Loss(Dropout(data))} - \text{Loss(data)} \quad \text{Regularizer(data)}

• Dropout reduces to a regularizer

\[
R(\theta, x) = \mathbb{E}[A(\tilde{x}^T \theta)] - A(x^T \theta)
\]
Second-order delta method

Take the Taylor expansion

\[A(s) \approx A(s_0) + (s - s_0)^T A'(s_0) + (s - s_0)^T \frac{A''(s_0)}{2} (s - s_0) \]
Second-order delta method

Take the Taylor expansion

\[A(s) \approx A(s_0) + (s - s_0)^T A'(s_0) + (s - s_0)^T \frac{A''(s_0)}{2} (s - s_0) \]

Substitute \(s = \tilde{s} \overset{\text{def}}{=} \theta^T \tilde{x} \), \(s_0 = \mathbb{E}[\tilde{s}] \)

Take expectations to get the quadratic approximation:

\[
R^q(\theta, x) = \frac{1}{2} \mathbb{E}[(\tilde{s} - s)^T \nabla^2 A(s) (\tilde{s} - s)] \\
= \frac{1}{2} \text{tr}(\nabla^2 A(s) \text{Cov}(\tilde{s}))
\]
Example: logistic regression

- The quadratic approximation

\[R^q(\theta, x) = \frac{1}{2} A''(x^T \theta) \text{Var}[\tilde{x}^T \theta] \]
Example: logistic regression

- The quadratic approximation
 \[R^q(\theta, x) = \frac{1}{2} A''(x^T \theta) \text{Var}[\tilde{x}^T \theta] \]

- \(A''(x^T \theta) = p(1 - p) \) represents uncertainty:
 \[p = p(y|x; \theta) = \left(1 + \exp(-yx^T \theta)\right)^{-1} \]
Example: logistic regression

- The quadratic approximation

\[R^q(\theta, x) = \frac{1}{2} A''(x^T \theta) \text{Var}[\tilde{x}^T \theta] \]

- \(A''(x^T \theta) = p(1 - p) \) represents uncertainty:

\[p = p(y|x; \theta) = (1 + \exp(-yx^T \theta))^{-1} \]

- \(\text{Var}[\tilde{x}^T \theta] = \sum_j \theta_j^2 x_j^2 \) is L_2-regularization after normalizing the data
The regularizers

- Dropout on Linear Regression

\[R^q(\theta) = \frac{1}{2} \sum_j \theta_j^2 \sum_i x_j^{(i)^2} \]

- Dropout on Logistic Regression

\[R^q(\theta) = \frac{1}{2} \sum_j \theta_j^2 \sum_i p_i(1 - p_i)x_j^{(i)^2} \]

- Multiclass, CRFs [Wang et al., 2013]
Dropout intuition

\[R^q(\theta) = \frac{1}{2} \sum_j \theta_j^2 \sum_i p_i (1 - p_i) x_j^{(i)2} \]

- Regularizes “rare” features less, like AdaGrad: there is actually a more precise connection [Wager et al., 2013]
- Big weights are okay if they contribute only to confident predictions
- Normalizing by the diagonal Fisher information
Semi-supervised Learning

- These regularizers are label-independent
 - but can be data adaptive in interesting ways
- labeled dataset $\mathcal{D} = \{x_1, x_2, \ldots, x_n\}$
- unlabeled data $\mathcal{D}_{\text{unlabeled}} = \{u_1, u_2, \ldots, u_n\}$
- We can better estimate the regularizer

\[
R_*(\theta, \mathcal{D}, \mathcal{D}_{\text{unlabeled}}) = \frac{n}{n + \alpha m} \left(\sum_{i=1}^{n} R(\theta, x_i) + \alpha \sum_{i=1}^{m} R(\theta, u_i) \right).
\]

for some tunable α.
Semi-supervised intuition

\[R^q(\theta) = \frac{1}{2} \sum_j \theta_j^2 \sum_i p_i (1 - p_i) x_{ij}^2 \]

- Like other semi-supervised methods:
 - transductive SVMs [Joachims, 1999]
 - entropy regularization [Grandvalet and Bengio, 2005]
 - EM: guess a label [Nigam et al., 2000]
 - want to make confident predictions on the unlabeled data
- Get a better estimate of the Fisher information
IMDB dataset [Maas et al., 2011]

- 25k examples of positive reviews
- 25k examples of negative reviews
- Half for training and half for testing
- 50k unlabeled reviews also containing neutral reviews
- 300k sparse unigram features
- ~5 million sparse bigram features
Experiments: semi-supervised

- Add more unlabeled data (10k labeled) improves performance
Experiments: semi-supervised

- Add more labeled data (40k unlabeled) improves performance
Quantitative results on IMDB

<table>
<thead>
<tr>
<th>Method \ Settings</th>
<th>Supervised</th>
<th>Semi-sup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNB - unigrams with SFE [Su et al., 2011]</td>
<td>83.62</td>
<td>84.13</td>
</tr>
<tr>
<td>Vectors for sentiment analysis [Maas et al., 2011]</td>
<td>88.33</td>
<td>88.89</td>
</tr>
<tr>
<td>This work: dropout + unigrams</td>
<td>87.78</td>
<td>89.52</td>
</tr>
<tr>
<td>This work: dropout + bigrams</td>
<td>91.31</td>
<td>91.98</td>
</tr>
</tbody>
</table>
Experiments: other datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Settings</th>
<th>L_2</th>
<th>Drop</th>
<th>+Unlbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjectivity</td>
<td>[Peng and Lee, 2004]</td>
<td>88.96</td>
<td>90.85</td>
<td>91.48</td>
</tr>
<tr>
<td>Rotten Tomatoes</td>
<td>[Peng and Lee, 2005]</td>
<td>73.49</td>
<td>75.18</td>
<td>76.56</td>
</tr>
<tr>
<td>20-newsgroups</td>
<td></td>
<td>82.19</td>
<td>83.37</td>
<td>84.71</td>
</tr>
<tr>
<td>CoNLL-2003</td>
<td></td>
<td>80.12</td>
<td>80.90</td>
<td>81.66</td>
</tr>
</tbody>
</table>
Outline

• Part 0: Some backgrounds
• Part 1: Dropout as adaptive regularization
 • with applications to semi-supervised learning
 • With Stefan and Percy
• Part 2: Applications to structured prediction using CRFs
 • when the log-partition function cannot be easily computed
 • with Mengqiu, Chris, Percy and Stefan
Log-linear structured prediction

- A vector of scores $s = (s_1, \ldots, s_{|\mathcal{Y}|})$
 $s_y = f(y, x) \cdot \theta$

- The likelihood is:

 $$p(y \mid x; \theta) = \exp\{s_y - A(s)\}$$

 $$A(s) = \log \sum_y \exp\{s_y\}$$

- $|\mathcal{Y}|$ might be really huge!
What about structured prediction?

• Recall that in logistic regression:

\[R^q(\theta) = \frac{1}{2} \sum_j \theta_j^2 \sum_i p_i (1 - p_i) x_j^{(i)^2} \]

• What if we cannot easily compute the log-partition function A? and its second derivatives?
The original setup

Take the Taylor expansion

\[A(s) \approx A(s_0) + (s - s_0)^T A'(s_0) + (s - s_0)^T \frac{A''(s_0)}{2} (s - s_0) \]

Substitute \(s = \tilde{s} \overset{\text{def}}{=} \theta^T \tilde{x}, \ s_0 = \mathbb{E}[\tilde{s}] \)

Take expectations to get the quadratic approximation:

\[
R^q(\theta, x) = \frac{1}{2} \mathbb{E}[(\tilde{s} - s)^T \nabla^2 A(s) (\tilde{s} - s)]
\]

\[
= \frac{1}{2} \text{tr}(\nabla^2 A(s) \text{Cov}(\tilde{s}))
\]
The structured prediction setup

Take the Taylor expansion

\[A(s) \approx A(s_0) + (s - s_0)^T A'(s_0) + (s - s_0)^T \frac{A''(s_0)}{2} (s - s_0) \]

Substitute \(s = \tilde{s} \overset{\text{def}}{=} \theta \cdot \tilde{f}(y, x) \), \(s_0 = \mathbb{E}[\tilde{s}] \)

Take expectations to get the quadratic approximation:

\[
R^q(\theta, x) = \frac{1}{2} \mathbb{E}[(\tilde{s} - s)^T \nabla^2 A(s)(\tilde{s} - s)]
\]

\[
= \frac{1}{2} \text{tr}(\nabla^2 A(s) \text{Cov}(\tilde{s}))
\]
Use the independence structure

- Depends on the underlying graphical model
- We assume we can do exact inference via message passing (e.g. clique tree)

- E.g. Linear-chain CRF:

\[
f(y, x) = \sum_{t=1}^{T} g_t(y_{t-1}, y_t, x)
\]

\[
A(s) = \log \sum_{y \in \mathcal{Y}} \exp \left\{ \sum_{t=1}^{T} s_{y_{t-1}, y_t, t} \right\}
\]
Local Noising

• Global noising:

\[s = \tilde{s} \overset{\text{def}}{=} \theta \cdot \tilde{f}(y, x) \]

• Local noising:

\[s = \tilde{s} \overset{\text{def}}{=} \theta \cdot \sum_{t=1}^{T} \tilde{g}(y_{t-1}, y_t, x) \]

• Can try to justify in retrospect
The regularizer

- The regularizer is:

\[R^q(\theta, x) = \frac{1}{2} \sum_{a,b,t} \mu_{a,b,t} (1 - \mu_{a,b,t}) \text{Var}[\tilde{s}_{a,b,t}] \]

- For marginals:

\[\mu_{a,b,t} = p_\theta(y_{t-1} = a, y_t = b \mid x) \]

- And derivatives:

\[\nabla \mu_{a,b,t} = \mathbb{E}_{\mathbb{P}_\theta(y \mid x, y_{t-1} = a, y_t = b)} [f(y, x)] - \mathbb{E}_{\mathbb{P}_\theta(y \mid x)} [f(y, x)] \]
Efficient computation

- For every a,b,t we need
 \[
 \nabla \mu_{a,b,t} = \mathbb{E}_{p_\theta(y|x,y_{t-1}=a,y_t=b)}[f(y,x)] - \mathbb{E}_{p_\theta(y|x)}[f(y,x)]
 \]

- Naïve computation is $O(K^4T^2)$
 - Can reduce to $O(K^3T^2)$

- We provide a dynamic program to compute in $O(KT^2)$, like normal forward backwards, except need to do this for every feature
Feature group trick (Mengqiu)

\[\nabla \mu_{a,b,t} = \mathbb{E}_{p_\theta(y|x, y_{t-1}=a, y_t=b)}[f(y, x)] - \mathbb{E}_{p_\theta(y|x)}[f(y, x)] \]

- Features that always appeared in the same location all have the same conditional expectations
- Gives a 4x speedup, applicable to general CRFs
CRF sequence tagging

- CoNLL 2003 Named Entity Recognition

Dataset \ Settings

<table>
<thead>
<tr>
<th>Dataset</th>
<th>None</th>
<th>L₂</th>
<th>Drop</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoNLL 2003 Dev</td>
<td>89.40</td>
<td>90.73</td>
<td>91.86</td>
</tr>
<tr>
<td>CoNLL 2003 Test</td>
<td>84.67</td>
<td>85.82</td>
<td>87.42</td>
</tr>
</tbody>
</table>
CRF sequence tagging

- Dropout helps more on precision than recall

<table>
<thead>
<tr>
<th>Tag</th>
<th>Precision</th>
<th>Recall</th>
<th>F$_{\beta=1}$</th>
<th>Precision</th>
<th>Recall</th>
<th>F$_{\beta=1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC</td>
<td>87.96%</td>
<td>86.13%</td>
<td>87.03</td>
<td>86.26%</td>
<td>87.74%</td>
<td>86.99</td>
</tr>
<tr>
<td>MISC</td>
<td>77.53%</td>
<td>79.30%</td>
<td>78.41</td>
<td>81.52%</td>
<td>77.34%</td>
<td>79.37</td>
</tr>
<tr>
<td>ORG</td>
<td>81.30%</td>
<td>80.49%</td>
<td>80.89</td>
<td>88.29%</td>
<td>81.89%</td>
<td>84.97</td>
</tr>
<tr>
<td>PER</td>
<td>90.30%</td>
<td>93.33%</td>
<td>91.79</td>
<td>92.15%</td>
<td>92.68%</td>
<td>92.41</td>
</tr>
<tr>
<td>Overall</td>
<td>85.57%</td>
<td>86.08%</td>
<td>85.82</td>
<td>88.40%</td>
<td>86.45%</td>
<td>87.42</td>
</tr>
</tbody>
</table>

(e) CoNLL test set with L_2 regularization
(f) CoNLL test set with dropout regularization
SANCL POS Tagging

- Test set difference statistically significant for newsgroups and reviews

<table>
<thead>
<tr>
<th>$F_{\beta=1}$</th>
<th>None</th>
<th>L_2</th>
<th>Drop</th>
</tr>
</thead>
<tbody>
<tr>
<td>newsgroups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dev</td>
<td>91.34</td>
<td>91.34</td>
<td>91.47</td>
</tr>
<tr>
<td>Test</td>
<td>91.44</td>
<td>91.44</td>
<td>91.81</td>
</tr>
<tr>
<td>reviews</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dev</td>
<td>91.97</td>
<td>91.95</td>
<td>92.10</td>
</tr>
<tr>
<td>Test</td>
<td>90.70</td>
<td>90.67</td>
<td>91.07</td>
</tr>
<tr>
<td>answers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dev</td>
<td>90.78</td>
<td>90.79</td>
<td>90.70</td>
</tr>
<tr>
<td>Test</td>
<td>91.00</td>
<td>90.99</td>
<td>91.09</td>
</tr>
</tbody>
</table>

Although the difference seems small, the performance differences on the test sets of reviews and newsgroups are statistically significant at the 0.1% level according to the paired bootstrap resampling method of 2000 iterations (Efron and Tibshirani, 1993).

6 Conclusion

We have presented a new regularizer for learning log-linear models such as multiclass logistic regression and conditional random fields. This regularizer is based on a second-order approximation of feature noising schemes, and attempts to favor models that predict confidently and are robust to noise in the data. In order to apply our method to CRFs, we tackle the key challenge of dealing with feature correlations that arise in the structured prediction setting in several ways. In addition, we show that the regularizer can be applied naturally in the semi-supervised setting. Finally, we applied our method to a range of different datasets and demonstrate consistent gains over standard L_2 regularization. Investigating how to better optimize this non-convex regularizer online and convincingly scale it to the semi-supervised setting seem to be promising future directions.
Summary

- Part 0: Some backgrounds
- Part 1: Dropout as adaptive regularization
 - with applications to semi-supervised learning
 - joint work with Stefan Wager and Percy
- Part 2: Applications to structured prediction using CRFs
 - when the log-partition function cannot be easily computed
 - joint work with Mengqiu, Chris, Percy and Stefan Wager
• Our arXiv paper [Wager et al., 2013] has more details, including the relation to AdaGrad

• Our EMNLP paper [Wang et al., 2013] extends this framework to structured prediction

• Our ICML paper [Wang and Manning, 2013] applies a related technique to neural networks and provides some negative examples
Dropout vs. L₂

- Can be much better than all settings of L₂
- Part of the gain comes from normalization

Table 2: Classification performance and transductive learning results on some standard datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>L₂ only</th>
<th>L₂+Gaussian dropout</th>
<th>L₂+Quadratic dropout</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoNLL</td>
<td>78.03</td>
<td>80.12</td>
<td>80.90</td>
</tr>
<tr>
<td>20news</td>
<td>81.44</td>
<td>82.19</td>
<td>83.37</td>
</tr>
<tr>
<td>RCV1</td>
<td>95.76</td>
<td>95.90</td>
<td>96.03</td>
</tr>
<tr>
<td>R21578</td>
<td>92.24</td>
<td>92.24</td>
<td>92.58</td>
</tr>
<tr>
<td>TDT2</td>
<td>97.74</td>
<td>97.91</td>
<td>98.00</td>
</tr>
</tbody>
</table>

Table 3: Semi-supervised learning results on some standard datasets. A third (33%) of the full dataset was used for training, a third for testing, and the rest as unlabeled.

Figure 2: Effect of L₂ regularization strength (λ) on the test set performance. Plotted is the test set accuracy with logistic regression as a function of L₂ for the L₂ regularizer, Gaussian dropout (Wang and Manning, 2013) + additional L₂, and quadratic dropout (7) + L₂ described in this paper. The default noising regularizer is quite good, and additional L₂ does not help. Notice that no choice of L₂ can help us combat overfitting as effectively as (7) without underfitting.
Example: linear least squares

- The loss function is \(f(\theta \cdot x) = \frac{1}{2}(\theta \cdot x - y)^2 \)
- Let \(X = \theta \cdot \tilde{x} \) where \(\tilde{x}_j = 2z_j x_j, z_j = \text{Bernoulli}(0.5) \)

\[
\mathbb{E}[f(X)] = f(\mathbb{E}[X]) + \frac{f''(\mathbb{E}[X])}{2} \text{Var}[X]
\]

\[
= \frac{1}{2}(\theta \cdot x - y)^2 + 1/2 \sum_j x_j^2 \theta_j^2
\]

- The total regularizer is

\[
R^q(\theta) = \frac{1}{2} \sum_j \theta_j^2 \sum_i x_j^{(i)2}
\]

- This is just L2 applied after data normalization
Quantitative results on IMDB

<table>
<thead>
<tr>
<th>Method \ Settings</th>
<th>Supervised</th>
<th>Semi-sup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNB - unigrams with SFE [Su et al., 2011]</td>
<td>83.62</td>
<td>84.13</td>
</tr>
<tr>
<td>MNB – bigrams</td>
<td>86.63</td>
<td>86.98</td>
</tr>
<tr>
<td>Vectors for sentiment analysis [Maas et al., 2011]</td>
<td>88.33</td>
<td>88.89</td>
</tr>
<tr>
<td>NBSVM – bigrams [Wang and Manning, 2012]</td>
<td>91.22</td>
<td>-</td>
</tr>
<tr>
<td>This work: dropout + unigrams</td>
<td>87.78</td>
<td>89.52</td>
</tr>
<tr>
<td>This work: dropout + bigrams</td>
<td>91.31</td>
<td>91.98</td>
</tr>
</tbody>
</table>