Naturalizing a programming language via interactive learning

Sida I. Wang, Samuel Ginn Percy Liang, Christopher D. Manning

ACL 2017, Vancouver BC

Natural language interfaces

how can they perform more complex actions?

natural language \boldsymbol{x} to an executable program \boldsymbol{z}

- human produces some utterance
- add 3 red blocks on this

natural language \boldsymbol{x} to an executable program \boldsymbol{z}

- human produces some utterance
- add 3 red blocks on this

• converts utterance to a program

natural language \boldsymbol{x} to an executable program \boldsymbol{z}

- human produces some utterance
- add 3 red blocks on this

- converts utterance to a program
- (loop 3 (add red top))

natural language \boldsymbol{x} to an executable program \boldsymbol{z}

- human produces some utterance
- add 3 red blocks on this

- converts utterance to a program
 (loop 3 (add red top))
 - execute the program z
 - produce a result y

natural language \boldsymbol{x} to an executable program \boldsymbol{z}

- human produces some utterance
- add 3 red blocks on this

- converts utterance to a program
- (loop 3 (add red top))
- execute the program z
- produce a result y

Collect a static dataset

- increase temperature by 3C
- setTemp(getTemp()+3)
- what is the largest state
- answer(A,largest(A,state(A))))
- people with children born in Vancouver Children.PlaceOfBirth.Vancouver
- add 3 red blocks on this
 (loop 3 (add red top))

Collect a static dataset

- increase temperature by 3C
- setTemp(getTemp()+3)
- what is the largest state
- answer(A,largest(A,state(A))))
- people with children born in Vancouver Children.PlaceOfBirth.Vancouver
- add 3 red blocks on this
- (loop 3 (add red top))
- then fit a model.

Collect a static dataset

- increase temperature by 3C
- setTemp(getTemp()+3)
- what is the largest state
- answer(A,largest(A,state(A))))
- people with children born in Vancouver Children.PlaceOfBirth.Vancouver
- add 3 red blocks on this
- (loop 3 (add red top))
- then fit a model.
- then deploy the system

we are stuck when these systems misunderstand us

we are stuck when these systems misunderstand us

we are stuck when these systems misunderstand us

systems with interactive learning ability built-in

we are stuck when these systems misunderstand us

systems with interactive learning ability built-in

learn from users in real-time

Test ideas in blocks world

blocks world: intuitive, easy to crowdsource, and captures some unsolved problems

Interactive learning language games

Wittgenstein. 1953. Philosophical Investigations:

Language derives its meaning from use.

'block' 'pillar' 'slab' 'beam'.

remove red
add(leftmost(hascolor(red)),red)
add(red, hascolor(cyan))
remove(hascolor(red))
remove(leftmost(hascolor(red)))

performs actions

does not talk

has a goal has language

remove(leftmost(hascolor(red))

performs actions

does not talk

has a goal has language

- user provides a label via selection
- system can learn from denotation, logical form, or final reward

- user provides a label via selection
- system can learn from denotation, logical form, or final reward
- for any learning to happen using these methods, the correct answer has to fall inside the search space

- user provides a label via selection
- system can learn from denotation, logical form, or final reward
- for any learning to happen using these methods, the correct answer has to fall inside the search space
- works for short programs:
 - answer(A,largest(A,state(A))))
 - remove(leftmost(hascolor(red)))

- user provides a label via selection
- system can learn from denotation, logical form, or final reward
- for any learning to happen using these methods, the correct answer has to fall inside the search space
- works for short programs:
 - answer(A,largest(A,state(A))))
 - remove(leftmost(hascolor(red)))
- cannot possibly scale to more complex programs

Cannot possibly keep up

legs of height 3 with 3 spaces apart

(:s (:s (:blkr (:s (:loop (number 3) (:s (: add brown here) (:for (call adj top this) (: select)))) (:loop (number 3) (:for (call adj bot this) (: select))))) (:loop (number 3) (:for (call adj left this) (: select)))) (:s (:s (:s (:s (:blkr (:s (:loop (number 3) (:s (: add brown here) (:for (call adj top this) (: select)))) (:loop (number 3) (:for (call adj bot this) (: select))))) (:loop (number 3) (:for (call adj back this) (: select)))) (:blkr (:s (:loop (number 3) (:s (: add brown here) (:for (call adj top this) (: select)))) (:loop (number 3) (:for (call adj bot this) (: select))))) (:loop (number 3) (:for (call adj right this) (: select)))) (:blkr (:s (:loop (number 3) (:s (: add brown here) (:for (call adj top this) (: select)))) (:loop (number 3) (:for (call adj bot this) (: select)))))))

number of programs of this length $> 10^{100}$

Cannot possibly keep up

legs of height 3 with 3 spaces apart

(:s (:s (:blkr (:s (:loop (number 3) (:s (: add brown here) (:for (call adj top this) (: select)))) (:loop (number 3) (:for (call adj bot this) (: select))))) (:loop (number 3) (:for (call adj left this) (: select)))) (:s (:s (:s (:s (:blkr (:s (:loop (number 3) (:s (: add brown here) (:for (call adj top this) (: select)))) (:loop (number 3) (:for (call adj bot this) (: select))))) (:loop (number 3) (:for (call adj back this) (: select)))) (:blkr (:s (:loop (number 3) (:s (: add brown here) (:for (call adj top this) (: select)))) (:loop (number 3) (:for (call adj bot this) (: select))))) (:loop (number 3) (:for (call adj right this) (: select)))) (:blkr (:s (:loop (number 3) (:s (: add brown here) (:for (call adj top this) (: select)))) (:loop (number 3) (:for (call adj bot this) (: select)))))))

number of programs of this length $> 10^{100}$

need stronger supervision to produce such programs

demonstrations, instructions, definitions

start with a core programming language

• starting point of definitions

start with a core programming language

- starting point of definitions
- a community of users interact with the system
 - more definition using core and previous definitions
 - leg of height 3 := brown column of height 3

start with a core programming language

- starting point of definitions
- a community of users interact with the system
 - more definition using core and previous definitions
 - leg of height 3 := brown column of height 3

induce grammar rule

start with a core programming language

- starting point of definitions
- a community of users interact with the system
 - more definition using core and previous definitions
 - leg of height 3 := brown column of height 3

induce grammar rule

- "learning macros from crowd programming"
- no explicit arguments and variables

Voxelurn

world is a set of objects with relations voxels: (x, y, z, color)relations: left, top, front, etc. actions: select, add, move

Core language

- controls: if, foreach, repeat, while
- block-structured scoping
 - , [], isolate

Core language

- controls: if, foreach, repeat, while
- block-structured scoping
 - , [], isolate
- lambda DCS for sets

yellow blocks in row 1

 $\lambda\text{-}\mathsf{DCS}:$ has color yellow and has row 1

Core language

- controls: if, foreach, repeat, while
- block-structured scoping
 - , [], isolate
- lambda DCS for sets

yellow blocks in row 1

- $\lambda\text{-}\mathsf{DCS}:$ has color yellow and has row 1
- selection as the default argument
 - add red top (to selected)
Lets make some trees

- define new things in terms of what's already defined
- trace back to the core language

define new concepts in terms of what's already defined everything trace back to the core language add palm tree:

add brown trunk height 3:

go to top:

add leaves here:

define new concepts in terms of what's already defined everything trace back to the core language

add palm tree:

add brown trunk height 3:

add brown top 3 times:

go to top:

add leaves here:

define new concepts in terms of what's already defined
everything trace back to the core language
add palm tree:
 add brown trunk height 3:
 add brown top 3 times:

repeat 3 [add brown top]

go to top:

add leaves here:

define new concepts in terms of what's already defined everything trace back to the core language add palm tree: add brown trunk height 3: add brown top 3 times: repeat 3 [add brown top] go to top: select very top of all add leaves here:

define new concepts in terms of what's already defined everything trace back to the core language add palm tree:

add brown trunk height 3: add brown top 3 times: repeat 3 [add brown top]

go to top:

select very top of all

add leaves here:

select left or right or front or back; add green

Inside a definition

unparsable head: add red left 3 times

Inside a definition

unparsable head: add red left 3 times

parsable body: repeat 3 add red left
 derivation of the body: (loop 3 (add red left))

Inside a definition

unparsable head: *add red left 3 times* parsable parts of the head: *red, left, 3, add red left*

parsable body: repeat 3 add red left
 derivation of the body: (loop 3 (add red left))

Unparsable head

unparsable head: add red left 3 times

Unparsable head

unparsable head: add red left 3 times

Parsable body

unparsable head: add red left 3 times

parsable body: repeat 3 add red left

Substitute matches

unparsable head: add red left 3 times

parsable body: repeat 3 add red left

Substitute matches

induced rule: $A \rightarrow A$ 3 times : $\lambda A.(\text{loop 3 A})$

Substitute matches

unparsable head: add red left 3 times

parsable body: repeat 3 add red left

induced rule: $A \rightarrow A$ N times : $\lambda A N.(\text{loop N A})$

Matches not unique

more abstract

add red left 3 times

repeat 3 add red left

 $A \rightarrow A \ N \text{ times } : \lambda A \ N.(\text{loop N A})$

less abstract

addredleft3timesrepeat3addredleft

 $A \rightarrow \text{add } C \ D \ N \text{ times } : \lambda C \ D \ N.(\text{loop } N \ (\text{add } C \ D))$

Take highest scoring ones

- a packing is a set of non-overlapping potential matches
 - maximal packing no span can be added

add red left3timesrepeat3add red left

Take highest scoring ones

- a packing is a set of non-overlapping potential matches
 - maximal packing no span can be added

addredleft3timesrepeat3addredleft

Take highest scoring ones

- a packing is a set of non-overlapping potential matches
 - maximal packing no span can be added

addredleft3timesrepeat3addredleft

• abstract away the highest scoring maximal packing

$$P_l^* = \operatorname*{argmax}_{P \in \operatorname{packing}(M); \ d \in P} \operatorname{score}(d).$$

• solve with a dynamic program

Model over derivations

log-linear model with features $\phi(d, x, u)$:

$$p_{\theta}(\mathbf{d} \mid x, u) \propto \exp(\phi(\mathbf{d}, x, u) \cdot \theta)$$

x : add two chairs 5 spaces apartz = formula(d) : (:blk (:loop ...))

Learning from denotations

$$p_{\theta}(\boldsymbol{d} \mid \boldsymbol{x}, \boldsymbol{u}) \propto \exp(\phi(\boldsymbol{d}, \boldsymbol{x}, \boldsymbol{u}) \cdot \theta)$$

x : add two chairs 5 spaces apartz = formula(d) : (:blk (:loop ...))

Learning from denotations

$$p_{\theta}(\boldsymbol{d} \mid \boldsymbol{x}, \boldsymbol{u}) \propto \exp(\phi(\boldsymbol{d}, \boldsymbol{x}, \boldsymbol{u}) \cdot \theta)$$
$$p_{\theta}(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{u}) = \sum_{\boldsymbol{d}: \operatorname{Exec}(\boldsymbol{d}) = \boldsymbol{y}} p_{\theta}(\boldsymbol{d} \mid \boldsymbol{x}, \boldsymbol{y})$$

x : add two chairs 5 spaces apart

z =formula(d) : (: blk (: loop...))

Learning from denotations

$$p_{\theta}(\boldsymbol{d} \mid \boldsymbol{x}, \boldsymbol{u}) \propto \exp(\phi(\boldsymbol{d}, \boldsymbol{x}, \boldsymbol{u}) \cdot \theta)$$
$$p_{\theta}(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{u}) = \sum_{\boldsymbol{d}: \operatorname{Exec}(\boldsymbol{d}) = \boldsymbol{y}} p_{\theta}(\boldsymbol{d} \mid \boldsymbol{x}, \boldsymbol{y})$$

x : add two chairs 5 spaces apart

z =formula(d) : (: blk (: loop...))

L1 penalty and update with AdaGrad

Features

• generic: ruleld, span

• rule type: core? induced? used?

• social: authorld, (authorld, userld), self?

• captures user community

Experiments

can crowdworkers provide such strong supervision?

initial users have to learn the core language

following user can build on previous users

chair legs of height 3

(:s (:s (:blkr (:s (:loop (number 3) (:s (: add brown here) (:for (call adj top this) (: select)))) (:loop (number 3) (:for (call adj bot this) (: select))))) (:loop (number 3) (:for (call adj left this) (: select)))) (:s (:s (:s (:s (:blkr (:s (:loop (number 3) (:s (: add brown here) (:for (call adj top this) (: select)))) (:loop (number 3) (:for (call adj bot this) (: select))))) (:loop (number 3) (:for (call adj back this) (: select)))) (:blkr (:s (:loop (number 3) (:s (: add brown here) (:for (call adj top this) (: select)))) (:loop (number 3) (:for (call adj bot this) (: select))))) (:loop (number 3) (:for (call adj right this) (: select)))) (:blkr (:s (:loop (number 3) (:s (: add brown here) (:for (call adj top this) (: select)))) (:loop (number 3) (:for (call adj bot this) (: select)))))))

Experiments

• users built great structures?

Experiments

• users built great structures! (show leaderboard)

go down 5, go up and back, left 2 add green monster, deer head

8 upvotes	E	initial go left 5 go front 2 add yellow column 3
		add yellow platform go back and right add yellow front 6
		add yellow go right add yellow front 6 go down 3
	MT_A #37QW 391 blks	add yellow column 3 go right go down 3 go front 6 go left
7 upvotes		initial black bottom
		barrier blue draw right; barrier blue draw back
		right 6; back 3; up 3; power pellet
	MT A #3X87 993 blks	back 3; repeat 2 [right 6]; barrier blue point front
	•	
7 upvotes		initial select left 6 select front 8 black 10x10x10 frame
		black 10x10x10 frame move front 10 move left 9 move bot 8
		move front 7 move left 9 move front move front 9
		move left 9 move bot 1 black 10x10x10 frame
	1411_A#3P VV VV 772 DIKS	

right 6; back 3; add yellow column 3 black 10x10x10 frame, green cube size 4

7 upvotes	2	select back 4;add brn select left 2;add brn select front 4;add brn
		select top;select back 4 add ylw select front 4
		add yellow tower 2 select right 2;select bot 2
		add ylw tower 2;select back 4;select bot 2 add ylw;select top
	MT_A #3DBQ 143 blks	add brown tower 2 select front 4;select bot add tower brn/ylw
7 upvotes		initial select front 6;move right 6 add row blue right 10
		select left;move front 10 add plate blue 8x10
		select left 8;move bot
	MT A #3DHE 427 blks	add row blue right 10;select left;move front 10

add brn, add ylw, add brn tower 2 add plate 8x10

skip add green back 12, skip remove back 12

Setup

- qualifier: build a fixed structure
- post-qual: over 3 days build whatever they want
- prizes for best structures
 - day 1: bridge, house, animal
 - day 2: tower, monster(s), flower(s)
 - day 3: ship(s), dancer(s), and castle
- prize for top h-index
 - a rule (and its author) gets a citation whenever it is used

Basic statistics

• 70 workers qualified, 42 participated, 230 structures

• 64075 utterances, 36589 accepts

- each accept leads to a datapoint labeled by derivation(s)
- 2495 definitions combining over 15k commands, 2817 induced rules (¡100 core)

Is naturalization happening

maybe best to use the core language and program...

Is naturalization happening

maybe best to use the core language and program...

core: utterance parsable with the initial core grammar induced: parsable with induced grammar by not by core unparsable: not parsable at all

Is naturalization happening

naturalization:

- 67% of all at the end (up from 0 in the beginning)
- 72.9% of all accepted, and 85.9% of the last 10k accepted
Expressive power

- cumulative average of string.length in program / utterance
- len(z)/len(z) is very stable at 2 for core language
- varies greatly by user

Modes of naturalization

short forms:

left, I, mov left, go left, j, sel left

br, blk, blu, brn, orangeright, left3

add row brn left 5 := add row brown left 5

Modes of naturalization

syntactic:

go down and right := go down; go right select orange := select has color orange add red top 4 times := repeat 4 [add red top]

I white

:= go left and add white mov up 2 := repeat 2 [select up] go up 3 := go up 2; go up

Modes of naturalization

higher level:

add black block width 2 length 2 height 3 := {repeat 3 [add black platform width 2...

flower petals

:= flower petal; back; flower petals

red cube size 5, add green plate 2 × 4, 5 × 5 open green square, brownbase

Citations

an induced rule gets a citation whenever it is used in a structure

Citations

move left 6		add brown tower 2		mov up	mov back	move down 3		wn 3
780 pts		721 pts		577 pts	357 pts	327 pts		
mov right 3 ^{291 pts}		front 11 154 pts	add 6 brown from 138 pts		move up 2 129 pts	2 d	lown 25 pts	
	add row brown right 9		add tower brown 10		ado	d blu	add blk	
	236 pts		234 pts		172	_{pts}	154 pts	
add b 1705 pts	236 p	/15						

add brown col red line 5 x 5 open green square add grass add water 243 pts 149 pts 116 pts 103 pts 88 pts short blue line front 12 open red 3 x 3 square add blue wall remove line 86 pts 76 pts 72 pts 68 pts 67 pts

Citations

basic statistics: 1113 cited rules, median 3, mean 46

left 3 : 5820 (*self*:459) go up 3 : 712 (self:208) *right* : 2879 (*self*:207) add brown tower 2:721 (self:63) *r* white : 175 (*self*:174) add red top 4 times : 309 go back and right : 272 select orange : 256 add white plate $6 \times 7:232$ add brown row 3:203*mov right* 3 : 178

Naturalization via interactive learning

• community of users can build on each other to naturalize the core language

Naturalization via interactive learning

- community of users can build on each other to naturalize the core language
- crowdworkers are able to provide strong supervision using definitions

Naturalization via interactive learning

- community of users can build on each other to naturalize the core language
- crowdworkers are able to provide strong supervision using definitions
- from core language the users are forced to use, to a language users want to use

Thanks for listening

Questions?

Issues

• predictability and interpretability: 2k + rules

• after 60k utterances, some simple utterances still not covered

• generalization of higher level concepts

 $\bullet\ chair \rightarrow chair \ with \ red \ legs$