
Semi-supervised Dropout Training

Baylearn 2013
Stefan Wager, Sida Wang, Percy Liang

The basics of dropout training

•  Introduced by Hinton et al. in “Improving neural
networks by preventing co-adaptation of feature
detectors”

•  For each example, randomly select features
•  zero them
•  compute the gradient, make an update

•  repeat

Empirically successful

•  Dropout is important in some recent successes
•  won the ImageNet challenge [Krizhevsky et al.,

2012]

•  won the Merck challenge [Dahl et al., 2012]

•  Improved performance on standard datasets
•  images: MNIST, CIFAR, ImageNet, etc.
•  document classification: Reuters, IMDB, Rotten

Tomatoes, etc.

•  speech: TIMIT, GlobalPhone, etc.

Lots of related works already

Variants

•  DropConnect [Wan et al., 2013]
•  Maxout networks [Goodfellow et al., 2013]

Analytical integration
•  Fast Dropout [Wang and Manning, 2013]

•  Marginalized Corrupted Features [van der
Maaten et al., 2013]

Many other works report empirical gains

Theoretical understanding?

•  Dropout as adaptive regularization
•  feature noising -> interpretable penalty term

•  Semi-supervised learning
•  feature dependent, label independent regularizer:

Loss(Dropout(data))

= Loss(data)+Regularizer(data)

Regularizer(Unlabeled data)

Dropout for Log-linear Models

•  Log likelihood (e.g., softmax classification):

✓ = [✓1, ✓2, . . . , ✓K]

log p(y|x; ✓) = x

T
✓y �A(x

T
✓)

Dropout for Log-linear Models

•  Log likelihood (e.g., softmax classification):

•  Dropout:

•  Dropout objective:

✓ = [✓1, ✓2, . . . , ✓K]

log p(y|x; ✓) = x

T
✓y �A(x

T
✓)

E[x̃] = x

x̃j =

(
2xj with p=0.5

0 otherwise

Loss(Dropout(data))

= Loss(data)+Regularizer(data)

E[log p(y|x̃; ✓)]| {z }
-Loss(Dropout(data))

= E[x̃T
✓y]� E[A(x̃

T
✓)]

Dropout for Log-linear Models

•  We can rewrite the dropout log-likelihood

•  Dropout reduces to a regularizer

R(✓, x) = E[A(x̃T
✓)]�A(xT

✓)

E[log p(y|x̃; ✓)] = E[x̃T
✓y] �E[A(x̃

T
✓)]

log p(y|x; ✓) = x

T
✓y �A(x

T
✓)

E[log p(y|x̃; ✓)]| {z }
-Loss(Dropout(data))

= log p(y|x; ✓)| {z }
-Loss(data)

�(E[A(x̃

T
✓)]�A(x

T
✓)| {z }

Regularizer(data)

)

Second-order delta method

Take the Taylor expansion

A(s) ⇡ A(s0) + (s� s0)
TA0(s0) + (s� s0)

T A00(s0)

2
(s� s0)

Second-order delta method

Take the Taylor expansion

Substitute ,
Take expectations to get the quadratic
approximation:

A(s) ⇡ A(s0) + (s� s0)
TA0(s0) + (s� s0)

T A00(s0)

2
(s� s0)

s = s̃

def
= ✓

T
x̃ s0 = E[s̃]

R

q
(✓, x) =

1

2

E[(s̃� s)Tr2
A(s)(s̃� s)]

=

1

2

tr(r2
A(s)Cov(s̃))

Example: logistic regression

•  The quadratic approximation

R

q(✓, x) =
1

2
A

00(xT
✓)Var[x̃T

✓]

Example: logistic regression

•  The quadratic approximation

•  represents uncertainty:

R

q(✓, x) =
1

2
A

00(xT
✓)Var[x̃T

✓]

A

00(xT
✓) = p(1� p)

p = p(y|x; ✓) = (1 + exp(�yx

T
✓))

�1

Example: logistic regression

•  The quadratic approximation

•  represents uncertainty:

•  is L2-regularization after

 normalizing the data

R

q(✓, x) =
1

2
A

00(xT
✓)Var[x̃T

✓]

Var[x̃T
✓] =

X

j

✓

2
jx

2
j

A

00(xT
✓) = p(1� p)

p = p(y|x; ✓) = (1 + exp(�yx

T
✓))

�1

The regularizers

•  Dropout on Linear Regression

•  Dropout on Logistic Regression

•  Multiclass, CRFs [Wang et al., 2013]

R

q(✓) =
1

2

X

j

✓

2
j

X

i

pi(1� pi)x
(i)2
j

R

q(✓) =
1

2

X

j

✓

2
j

X

i

x

(i)2
j

Dropout intuition

•  Regularizes “rare” features less, like AdaGrad:
there is actually a more precise connection
[Wager et al., 2013]

•  Big weights are okay if they contribute only to
confident predictions

•  Normalizing by the diagonal Fisher information

R

q(✓) =
1

2

X

j

✓

2
j

X

i

pi(1� pi)x
(i)2
j

Semi-supervised Learning

•  These regularizers are label-independent
•  but can be data adaptive in interesting ways
•  labeled dataset

•  unlabeled data

•  We can better estimate the regularizer

for some tunable .

D = {x1, x2, . . . , xn}
Dunlabeled = {u1, u2, . . . , un}

R⇤(✓,D,Dunlabeled)

def
=

n

n+ ↵m

⇣ nX

i=1

R(✓, xi) + ↵

mX

i=1

R(✓, ui)
⌘
.

↵

Semi-supervised intuition

•  Like other semi-supervised methods:
•  transductive SVMs [Joachims, 1999]
•  entropy regularization [Grandvalet and Bengio,

2005]

•  EM: guess a label [Nigam et al., 2000]
•  want to make confident predictions on the

unlabeled data

•  Get a better estimate of the Fisher information

R

q(✓) =
1

2

X

j

✓

2
j

X

i

pi(1� pi)x
(i)2
j

IMDB dataset [Maas et al., 2011]

•  25k examples of positive reviews

•  25k examples of negative reviews
•  Half for training and half for testing

•  50k unlabeled reviews also containing neutral
reviews

•  300k sparse unigram features

•  ~5 million sparse bigram features

Experiments: semi-supervised

•  Add more unlabeled data (10k labeled)
improves performance

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0 10000 20000 30000 40000
0.8

0.82

0.84

0.86

0.88

0.9

size of unlabeled data

a
cc

u
ra

cy

dropout+unlabeled

dropout

L2

5000 10000 15000
0.8

0.82

0.84

0.86

0.88

0.9

size of labeled data

a
cc

u
ra

cy

dropout+unlabeled

dropout

L2

Figure 2: Test set accuracy on the IMDB dataset [12] with unigram features. Left: 10000 labeled
training examples, and up to 40000 unlabeled examples. Right: 3000-15000 labeled training exam-
ples, and 25000 unlabeled examples. The unlabeled data is discounted by a factor ↵ = 0.4.

where the first two terms form a linear approximation to the loss and the third term is an L2-
regularizer. Thus, SGD progresses by repeatedly solving linearized L2-regularized problems.

As discussed by Duchi et al. [11], a problem with classic SGD is that it can be slow at learning
weights corresponding to rare but highly discriminative features. This problem can be alleviated
by running a modified form of SGD with ˆ�

t+1 =

ˆ�
t

� ⌘A�1
t

g
t

, where the transformation A
t

is
also learned online; this leads to the AdaGrad family of stochastic descent rules. Duchi et al. use
A

t

= diag(G
t

)

1/2 where G
t

=

P

t

i=1 gig
>
i

and show that this choice achieves desirable regret
bounds in the presence of rare but useful features. At least superficially, AdaGrad and dropout seem
to have similar goals: For logistic regression, they can both be understood as adaptive alternatives
to methods based on L2-regularization that favor learning rare, useful features. As it turns out, they
have a deeper connection.

The natural way to incorporate dropout regularization into SGD is to replace the penalty term
k�k22/2⌘ in (15) with the dropout regularizer, giving us an update rule

ˆ�
t+1 = argmin

�

n

`
xt, yt(

ˆ�
t

) + g
t

· (� � ˆ�
t

) +Rq
(� � ˆ�

t

)

o

(16)

where, Rq is the quadratic noising regularizer. From (11) we see that

Rq
(� � ˆ�

t

) =

1

2

(� � ˆ�
t

)

>
diag(H

t

)(� � ˆ�
t

),where H
t

=

t

X

i=1

r2`
xi, yi(

ˆ�
t

). (17)

This implies that dropout descent is first-order equivalent to an adaptive SGD procedure with A
t

=

diag(H
t

). To see the connection between AdaGrad and this dropout-based online procedure, recall
that for GLMs both of the expressions

E
�

⇤
⇥

r2`
x, y

(�⇤
)

⇤

= E
�

⇤
⇥

r`
x, y

(�⇤
)r`

x, y

(�⇤
)

>⇤ (18)

are equal to the Fisher information I [16]. In other words, as ˆ�
t

converges to �⇤, G
t

and H
t

are both
effectively estimating the Fisher information. Thus, by using dropout instead of L2-regularization
to solve linearized problems in online learning, we end up with an AdaGrad-like algorithm.

Of course, the connection between AdaGrad and dropout is not perfect. In particular, AdaGrad
allows for a more aggressive learning rate by using A

t

= diag(G
t

)

�1/2 instead of diag(G
t

)

�1.
But, at a high level, AdaGrad and dropout appear to both be aiming for the same goal: scaling
the features by the Fisher information to make the level-curves of the objective more circular. In
contrast, L2-regularization makes no attempt to sphere the level curves, and AROW [17]—another
popular adaptive method for online learning—only attempts to normalize the effective feature matrix
but doesn’t consider the sensitivity of the loss to changes in the model weights.

7

Experiments: semi-supervised

•  Add more labeled data (40k unlabeled)
improves performance

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0 10000 20000 30000 40000
0.8

0.82

0.84

0.86

0.88

0.9

size of unlabeled data

a
cc

u
ra

cy

dropout+unlabeled

dropout

L2

5000 10000 15000
0.8

0.82

0.84

0.86

0.88

0.9

size of labeled data

a
cc

u
ra

cy

dropout+unlabeled

dropout

L2

Figure 2: Test set accuracy on the IMDB dataset [12] with unigram features. Left: 10000 labeled
training examples, and up to 40000 unlabeled examples. Right: 3000-15000 labeled training exam-
ples, and 25000 unlabeled examples. The unlabeled data is discounted by a factor ↵ = 0.4.

where the first two terms form a linear approximation to the loss and the third term is an L2-
regularizer. Thus, SGD progresses by repeatedly solving linearized L2-regularized problems.

As discussed by Duchi et al. [11], a problem with classic SGD is that it can be slow at learning
weights corresponding to rare but highly discriminative features. This problem can be alleviated
by running a modified form of SGD with ˆ�

t+1 =

ˆ�
t

� ⌘A�1
t

g
t

, where the transformation A
t

is
also learned online; this leads to the AdaGrad family of stochastic descent rules. Duchi et al. use
A

t

= diag(G
t

)

1/2 where G
t

=

P

t

i=1 gig
>
i

and show that this choice achieves desirable regret
bounds in the presence of rare but useful features. At least superficially, AdaGrad and dropout seem
to have similar goals: For logistic regression, they can both be understood as adaptive alternatives
to methods based on L2-regularization that favor learning rare, useful features. As it turns out, they
have a deeper connection.

The natural way to incorporate dropout regularization into SGD is to replace the penalty term
k�k22/2⌘ in (15) with the dropout regularizer, giving us an update rule

ˆ�
t+1 = argmin

�

n

`
xt, yt(

ˆ�
t

) + g
t

· (� � ˆ�
t

) +Rq
(� � ˆ�

t

)

o

(16)

where, Rq is the quadratic noising regularizer. From (11) we see that

Rq
(� � ˆ�

t

) =

1

2

(� � ˆ�
t

)

>
diag(H

t

)(� � ˆ�
t

),where H
t

=

t

X

i=1

r2`
xi, yi(

ˆ�
t

). (17)

This implies that dropout descent is first-order equivalent to an adaptive SGD procedure with A
t

=

diag(H
t

). To see the connection between AdaGrad and this dropout-based online procedure, recall
that for GLMs both of the expressions

E
�

⇤
⇥

r2`
x, y

(�⇤
)

⇤

= E
�

⇤
⇥

r`
x, y

(�⇤
)r`

x, y

(�⇤
)

>⇤ (18)

are equal to the Fisher information I [16]. In other words, as ˆ�
t

converges to �⇤, G
t

and H
t

are both
effectively estimating the Fisher information. Thus, by using dropout instead of L2-regularization
to solve linearized problems in online learning, we end up with an AdaGrad-like algorithm.

Of course, the connection between AdaGrad and dropout is not perfect. In particular, AdaGrad
allows for a more aggressive learning rate by using A

t

= diag(G
t

)

�1/2 instead of diag(G
t

)

�1.
But, at a high level, AdaGrad and dropout appear to both be aiming for the same goal: scaling
the features by the Fisher information to make the level-curves of the objective more circular. In
contrast, L2-regularization makes no attempt to sphere the level curves, and AROW [17]—another
popular adaptive method for online learning—only attempts to normalize the effective feature matrix
but doesn’t consider the sensitivity of the loss to changes in the model weights.

7

Quantitative results on IMDB

Method \ Settings Supervised Semi-sup.

MNB - unigrams with SFE
[Su et al., 2011]

83.62 84.13

Vectors for sentiment analysis
[Maas et al., 2011]

88.33 88.89

This work: dropout + unigrams 87.78 89.52

This work: dropout + bigrams 91.31 91.98

Experiments: other datasets

Dataset \ Settings L2 Drop +Unlbl
Subjectivity [Peng and Lee,
2004]

88.96 90.85 91.48

Rotten Tomatoes [Peng and
Lee, 2005]

73.49 75.18 76.56

20-newsgroups 82.19 83.37 84.71

CoNLL-2003 80.12 80.90 81.66

Advertisements

•  Our arXiv paper [Wager et al., 2013] has more
details, including the relation to AdaGrad

•  Our EMNLP paper [Wang et al., 2013] extends
this framework to structured prediction

•  Our ICML paper [Wang and Manning, 2013]
applies a related technique to neural networks
and provides some negative examples

CRF sequence tagging

•  CoNLL 2003 Named Entity Recognition
•  Facebook[ORG] is[O] hosting[O] Baylearn[MISC]

in[O] Menlo[LOC] Park[LOC]

Dataset \ Settings None L2 Drop
CoNLL 2003 Dev 89.40 90.73 91.86

CoNLL 2003 Test 84.67 85.82 87.42

Advertisements

•  Our arXiv paper [Wager et al., 2013] has more
details, including the relation to AdaGrad

•  Our EMNLP paper [Wang et al., 2013] extends
this framework to structured prediction

•  Our ICML paper [Wang and Manning, 2013]
applies a related technique to neural networks
and provides some negative examples

•  Thanks! Any questions?

Dropout vs. L2

•  Can be much better than all settings of L2

•  Part of the gain comes from normalization

Dataset K None L2 Drop +Test
CoNLL 5 78.03 80.12 80.90 81.66
20news 20 81.44 82.19 83.37 84.71
RCV14 4 95.76 95.90 96.03 96.11
R21578 65 92.24 92.24 92.24 92.58

TDT2 30 97.74 97.91 98.00 98.12

Table 2: Classification performance and transduc-
tive learning results on some standard datasets.
None: use no regularization, Drop: quadratic ap-
proximation to the dropout noise (7), +Test: also use
the test set to estimate the noising regularizer (10).

5.1.1 Semi-supervised Learning with Feature
Noising

In the transductive setting, we used test data
(without labels) to learn a better regularizer. As an
alternative, we could also use unlabeled data in place
of the test data to accomplish a similar goal; this
leads to a semi-supervised setting.

To test the semi-supervised idea, we use the same
datasets as above. We split each dataset evenly into
3 thirds that we use as a training set, a test set and an
unlabeled dataset. Results are given in Table 3.

In most cases, our semi-supervised accuracies are
lower than the transductive accuracies given in Table
2; this is normal in our setup, because we used less
labeled data to train the semi-supervised classifier
than the transductive one.4

5.1.2 The Second-Order Approximation
The results reported above all rely on the ap-

proximate dropout regularizer (7) that is based on a
second-order Taylor expansion. To test the validity
of this approximation we compare it to the Gaussian
method developed by Wang and Manning (2013) on
a two-class classification task.

We use the 20-newsgroups alt.atheism vs
soc.religion.christian classification task;
results are shown in Figure 2. There are 1427 exam-

4The CoNNL results look somewhat surprising, as the semi-
supervised results are better than the transductive ones. The
reason for this is that the original CoNLL test set came from a
different distributions than the training set, and this made the
task more difficult. Meanwhile, in our semi-supervised experi-
ment, the test and train sets are drawn from the same distribu-
tion and so our semi-supervised task is actually easier than the
original one.

Dataset K L2 Drop +Unlabeled
CoNLL 5 91.46 91.81 92.02
20news 20 76.55 79.07 80.47
RCV14 4 94.76 94.79 95.16
R21578 65 90.67 91.24 90.30

TDT2 30 97.34 97.54 97.89

Table 3: Semisupervised learning results on some
standard datasets. A third (33%) of the full dataset
was used for training, a third for testing, and the rest
as unlabeled.

10
−6

10
−4

10
−2

10
0

10
2

0.78

0.8

0.82

0.84

0.86

0.88

0.9

L
2
 regularization strength (λ)

A
cc

u
ra

cy

L2 only
L2+Gaussian dropout
L2+Quadratic dropout

Figure 2: Effect of � in �k✓k22 on the testset perfor-
mance. Plotted is the test set accuracy with logis-
tic regression as a function of � for the L2 regular-
izer, Gaussian dropout (Wang and Manning, 2013)
+ additional L2, and quadratic dropout (7) + L2 de-
scribed in this paper. The default noising regularizer
is quite good, and additional L2 does not help. No-
tice that no choice of � in L2 can help us combat
overfitting as effectively as (7) without underfitting.

ples with 22178 features, split evenly and randomly
into a training set and a test set.

Over a broad range of � values, we find that
dropout plus L2 regularization performs far better
than using just L2 regularization for any value of
�. We see that Gaussian dropout appears to per-
form slightly better than the quadratic approxima-
tion discussed in this paper. However, our quadratic
approximation extends easily to the multiclass case
and to structured prediction in general, while Gaus-
sian dropout does not. Thus, it appears that our ap-
proximation presents a reasonable trade-off between

Example: linear least squares

•  The loss function is

•  Let where ,

•  The total regularizer is

•  This is just L2 applied after data normalization

X = ✓ · x̃ x̃j = 2zjxj

R

q(✓) =
1

2

X

j

✓

2
j

X

i

x

(i)2
j

f(✓ · x) = 1/2(✓ · x� y)2

E[f(X)] = f(E[X]) +
f

00(E[X])

2
Var[X]

= 1/2(✓ · x� y)2 + 1/2
X

j

x

2
j✓

2
j

zj = Bernoulli(0.5)

Quantitative results on IMDB

Method \ Settings Supervised Semi-sup.

MNB - unigrams with SFE
[Su et al., 2011]

83.62 84.13

MNB – bigrams 86.63 86.98

Vectors for sentiment analysis
[Maas et al., 2011]

88.33 88.89

NBSVM – bigrams
[Wang and Manning, 2012]

91.22 -

This work: dropout + unigrams 87.78 89.52

This work: dropout + bigrams 91.31 91.98

