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The basics of dropout training 

•  Introduced by Hinton et al. in “Improving neural 
networks by preventing co-adaptation of feature 
detectors” 

•  For each example, randomly select features 
•  zero them 
•  compute the gradient, make an update 

•  repeat  



Empirically successful 

•  Dropout is important in some recent successes 
•  won the ImageNet challenge [Krizhevsky et al., 

2012] 

•  won the Merck challenge [Dahl et al., 2012] 

•  Improved performance on standard datasets 
•  images: MNIST, CIFAR, ImageNet, etc. 
•  document classification: Reuters, IMDB, Rotten 

Tomatoes, etc. 

•  speech: TIMIT, GlobalPhone, etc. 



Lots of related works already 

Variants 

•  DropConnect [Wan et al., 2013] 
•  Maxout networks [Goodfellow et al., 2013] 

 
Analytical integration 
•  Fast Dropout [Wang and Manning, 2013] 

•  Marginalized Corrupted Features [van der 
Maaten et al., 2013] 

 
Many other works report empirical gains 



Theoretical understanding? 

•  Dropout as adaptive regularization 
•  feature noising -> interpretable penalty term 

   

•  Semi-supervised learning 
•  feature dependent, label independent regularizer: 

Loss( Dropout(data) )

= Loss(data)+Regularizer(data)

Regularizer(Unlabeled data)



Dropout for Log-linear Models 

•  Log likelihood (e.g., softmax classification): 
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Dropout for Log-linear Models 

•  Log likelihood (e.g., softmax classification): 

 
•  Dropout: 
 

•  Dropout objective: 
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Dropout for Log-linear Models 

•  We can rewrite the dropout log-likelihood 

•  Dropout reduces to a regularizer 
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Second-order delta method 

Take the Taylor expansion 
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Second-order delta method 

Take the Taylor expansion 

 
 

Substitute                   ,  
Take expectations to get the quadratic 
approximation: 
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Example: logistic regression 

 
•  The quadratic approximation 
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Example: logistic regression 

 
•  The quadratic approximation 

 

•                               represents uncertainty: 
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Example: logistic regression 

 
•  The quadratic approximation 

 

•                               represents uncertainty: 

•                                is L2-regularization after 

    normalizing the data 
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The regularizers 

 
•  Dropout on Linear Regression 

 

•  Dropout on Logistic Regression 

 

•  Multiclass, CRFs [Wang et al., 2013] 
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Dropout intuition 

 
 

•  Regularizes “rare” features less, like AdaGrad: 
there is actually a more precise connection 
[Wager et al., 2013] 

•  Big weights are okay if they contribute only to 
confident predictions 

•  Normalizing by the diagonal Fisher information 
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Semi-supervised Learning 

•  These regularizers are label-independent 
•  but can be data adaptive in interesting ways 
•  labeled dataset 

•  unlabeled data 

•  We can better estimate the regularizer 

 

for some tunable   . 
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Semi-supervised intuition 

•  Like other semi-supervised methods: 
•  transductive SVMs [Joachims, 1999] 
•  entropy regularization [Grandvalet and Bengio, 

2005] 

•  EM: guess a label [Nigam et al., 2000] 
•  want to make confident predictions on the 

unlabeled data 

•  Get a better estimate of the Fisher information 

R

q(✓) =
1

2

X

j

✓

2
j

X

i

pi(1� pi)x
(i)2
j



IMDB dataset [Maas et al., 2011] 

•  25k examples of positive reviews 

•  25k examples of negative reviews 
•  Half for training and half for testing 

•  50k unlabeled reviews also containing neutral 
reviews 

•  300k sparse unigram features 

•  ~5 million sparse bigram features 



Experiments: semi-supervised 

•  Add more unlabeled data (10k labeled) 
improves performance 
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Figure 2: Test set accuracy on the IMDB dataset [12] with unigram features. Left: 10000 labeled
training examples, and up to 40000 unlabeled examples. Right: 3000-15000 labeled training exam-
ples, and 25000 unlabeled examples. The unlabeled data is discounted by a factor ↵ = 0.4.

where the first two terms form a linear approximation to the loss and the third term is an L2-
regularizer. Thus, SGD progresses by repeatedly solving linearized L2-regularized problems.

As discussed by Duchi et al. [11], a problem with classic SGD is that it can be slow at learning
weights corresponding to rare but highly discriminative features. This problem can be alleviated
by running a modified form of SGD with ˆ�

t+1 =
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t
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t

g
t
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and show that this choice achieves desirable regret
bounds in the presence of rare but useful features. At least superficially, AdaGrad and dropout seem
to have similar goals: For logistic regression, they can both be understood as adaptive alternatives
to methods based on L2-regularization that favor learning rare, useful features. As it turns out, they
have a deeper connection.

The natural way to incorporate dropout regularization into SGD is to replace the penalty term
k�k22/2⌘ in (15) with the dropout regularizer, giving us an update rule
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where, Rq is the quadratic noising regularizer. From (11) we see that
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This implies that dropout descent is first-order equivalent to an adaptive SGD procedure with A
t

=

diag(H
t

). To see the connection between AdaGrad and this dropout-based online procedure, recall
that for GLMs both of the expressions
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are equal to the Fisher information I [16]. In other words, as ˆ�
t

converges to �⇤, G
t

and H
t

are both
effectively estimating the Fisher information. Thus, by using dropout instead of L2-regularization
to solve linearized problems in online learning, we end up with an AdaGrad-like algorithm.

Of course, the connection between AdaGrad and dropout is not perfect. In particular, AdaGrad
allows for a more aggressive learning rate by using A

t

= diag(G
t

)

�1/2 instead of diag(G
t

)

�1.
But, at a high level, AdaGrad and dropout appear to both be aiming for the same goal: scaling
the features by the Fisher information to make the level-curves of the objective more circular. In
contrast, L2-regularization makes no attempt to sphere the level curves, and AROW [17]—another
popular adaptive method for online learning—only attempts to normalize the effective feature matrix
but doesn’t consider the sensitivity of the loss to changes in the model weights.

7



Experiments: semi-supervised 

•  Add more labeled data (40k unlabeled) 
improves performance 
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Figure 2: Test set accuracy on the IMDB dataset [12] with unigram features. Left: 10000 labeled
training examples, and up to 40000 unlabeled examples. Right: 3000-15000 labeled training exam-
ples, and 25000 unlabeled examples. The unlabeled data is discounted by a factor ↵ = 0.4.

where the first two terms form a linear approximation to the loss and the third term is an L2-
regularizer. Thus, SGD progresses by repeatedly solving linearized L2-regularized problems.

As discussed by Duchi et al. [11], a problem with classic SGD is that it can be slow at learning
weights corresponding to rare but highly discriminative features. This problem can be alleviated
by running a modified form of SGD with ˆ�
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and show that this choice achieves desirable regret
bounds in the presence of rare but useful features. At least superficially, AdaGrad and dropout seem
to have similar goals: For logistic regression, they can both be understood as adaptive alternatives
to methods based on L2-regularization that favor learning rare, useful features. As it turns out, they
have a deeper connection.

The natural way to incorporate dropout regularization into SGD is to replace the penalty term
k�k22/2⌘ in (15) with the dropout regularizer, giving us an update rule
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where, Rq is the quadratic noising regularizer. From (11) we see that
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This implies that dropout descent is first-order equivalent to an adaptive SGD procedure with A
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are equal to the Fisher information I [16]. In other words, as ˆ�
t

converges to �⇤, G
t

and H
t
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effectively estimating the Fisher information. Thus, by using dropout instead of L2-regularization
to solve linearized problems in online learning, we end up with an AdaGrad-like algorithm.

Of course, the connection between AdaGrad and dropout is not perfect. In particular, AdaGrad
allows for a more aggressive learning rate by using A

t

= diag(G
t

)

�1/2 instead of diag(G
t

)

�1.
But, at a high level, AdaGrad and dropout appear to both be aiming for the same goal: scaling
the features by the Fisher information to make the level-curves of the objective more circular. In
contrast, L2-regularization makes no attempt to sphere the level curves, and AROW [17]—another
popular adaptive method for online learning—only attempts to normalize the effective feature matrix
but doesn’t consider the sensitivity of the loss to changes in the model weights.
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Quantitative results on IMDB 

Method \ Settings Supervised Semi-sup. 

MNB - unigrams with SFE  
[Su et al., 2011] 

83.62 84.13 

Vectors for sentiment analysis 
[Maas et al., 2011] 

88.33 88.89 

This work: dropout + unigrams 87.78 89.52 

This work: dropout + bigrams 91.31 91.98 



Experiments: other datasets 

Dataset \ Settings L2 Drop +Unlbl 
Subjectivity [Peng and Lee, 
2004] 

88.96 90.85 91.48 

Rotten Tomatoes [Peng and 
Lee, 2005] 

73.49 75.18 76.56 

20-newsgroups 82.19 83.37 84.71 

CoNLL-2003 80.12 80.90 81.66 



Advertisements 

•  Our arXiv paper [Wager et al., 2013] has more 
details, including the relation to AdaGrad 

•  Our EMNLP paper [Wang et al., 2013] extends 
this framework to structured prediction 

•  Our ICML paper [Wang and Manning, 2013] 
applies a related technique to neural networks 
and provides some negative examples 

 



CRF sequence tagging 

•  CoNLL 2003 Named Entity Recognition 
•  Facebook[ORG] is[O] hosting[O] Baylearn[MISC] 

in[O] Menlo[LOC] Park[LOC] 

Dataset \ Settings None L2 Drop 
CoNLL 2003 Dev 89.40 90.73 91.86 

CoNLL 2003 Test 84.67 85.82 87.42 



Advertisements 

•  Our arXiv paper [Wager et al., 2013] has more 
details, including the relation to AdaGrad 

•  Our EMNLP paper [Wang et al., 2013] extends 
this framework to structured prediction 

•  Our ICML paper [Wang and Manning, 2013] 
applies a related technique to neural networks 
and provides some negative examples 

•  Thanks! Any questions? 



Dropout vs. L2 

•  Can be much better than all settings of L2 

•  Part of the gain comes from normalization 

Dataset K None L2 Drop +Test
CoNLL 5 78.03 80.12 80.90 81.66
20news 20 81.44 82.19 83.37 84.71
RCV14 4 95.76 95.90 96.03 96.11
R21578 65 92.24 92.24 92.24 92.58

TDT2 30 97.74 97.91 98.00 98.12

Table 2: Classification performance and transduc-
tive learning results on some standard datasets.
None: use no regularization, Drop: quadratic ap-
proximation to the dropout noise (7), +Test: also use
the test set to estimate the noising regularizer (10).

5.1.1 Semi-supervised Learning with Feature
Noising

In the transductive setting, we used test data
(without labels) to learn a better regularizer. As an
alternative, we could also use unlabeled data in place
of the test data to accomplish a similar goal; this
leads to a semi-supervised setting.

To test the semi-supervised idea, we use the same
datasets as above. We split each dataset evenly into
3 thirds that we use as a training set, a test set and an
unlabeled dataset. Results are given in Table 3.

In most cases, our semi-supervised accuracies are
lower than the transductive accuracies given in Table
2; this is normal in our setup, because we used less
labeled data to train the semi-supervised classifier
than the transductive one.4

5.1.2 The Second-Order Approximation
The results reported above all rely on the ap-

proximate dropout regularizer (7) that is based on a
second-order Taylor expansion. To test the validity
of this approximation we compare it to the Gaussian
method developed by Wang and Manning (2013) on
a two-class classification task.

We use the 20-newsgroups alt.atheism vs
soc.religion.christian classification task;
results are shown in Figure 2. There are 1427 exam-

4The CoNNL results look somewhat surprising, as the semi-
supervised results are better than the transductive ones. The
reason for this is that the original CoNLL test set came from a
different distributions than the training set, and this made the
task more difficult. Meanwhile, in our semi-supervised experi-
ment, the test and train sets are drawn from the same distribu-
tion and so our semi-supervised task is actually easier than the
original one.

Dataset K L2 Drop +Unlabeled
CoNLL 5 91.46 91.81 92.02
20news 20 76.55 79.07 80.47
RCV14 4 94.76 94.79 95.16
R21578 65 90.67 91.24 90.30

TDT2 30 97.34 97.54 97.89

Table 3: Semisupervised learning results on some
standard datasets. A third (33%) of the full dataset
was used for training, a third for testing, and the rest
as unlabeled.
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L2+Quadratic dropout

Figure 2: Effect of � in �k✓k22 on the testset perfor-
mance. Plotted is the test set accuracy with logis-
tic regression as a function of � for the L2 regular-
izer, Gaussian dropout (Wang and Manning, 2013)
+ additional L2, and quadratic dropout (7) + L2 de-
scribed in this paper. The default noising regularizer
is quite good, and additional L2 does not help. No-
tice that no choice of � in L2 can help us combat
overfitting as effectively as (7) without underfitting.

ples with 22178 features, split evenly and randomly
into a training set and a test set.

Over a broad range of � values, we find that
dropout plus L2 regularization performs far better
than using just L2 regularization for any value of
�. We see that Gaussian dropout appears to per-
form slightly better than the quadratic approxima-
tion discussed in this paper. However, our quadratic
approximation extends easily to the multiclass case
and to structured prediction in general, while Gaus-
sian dropout does not. Thus, it appears that our ap-
proximation presents a reasonable trade-off between



Example: linear least squares 

•  The loss function is 

•  Let               where                ,  

 
•  The total regularizer is 

•  This is just L2 applied after data normalization 

 

X = ✓ · x̃ x̃j = 2zjxj

R

q(✓) =
1

2

X

j

✓

2
j

X

i

x

(i)2
j

f(✓ · x) = 1/2(✓ · x� y)2

E[f(X)] = f(E[X]) +
f

00(E[X])

2
Var[X]

= 1/2(✓ · x� y)2 + 1/2
X

j

x

2
j✓

2
j

zj = Bernoulli(0.5)



Quantitative results on IMDB 

Method \ Settings Supervised Semi-sup. 

MNB - unigrams with SFE  
[Su et al., 2011] 

83.62 84.13 

MNB – bigrams 86.63 86.98 

Vectors for sentiment analysis 
[Maas et al., 2011] 

88.33 88.89 

NBSVM – bigrams  
[Wang and Manning, 2012] 

91.22 - 

This work: dropout + unigrams 87.78 89.52 

This work: dropout + bigrams 91.31 91.98 


