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Ly What is dropout training

 Recently introduced by Hinton et al. in
“‘Improving neural networks by preventing co-
adaptation of feature detectors”

« Randomly select some inputs for each unit
e zero them
e« compute the gradient, make an update
e repeat




ey Dropout training is promising

 Won the ImageNet challenge by a margin
 George Dahl et al. won the Merck challenge

 Dropout seems to be an important ingredient




.\ Preventing the danger of
Lby) co-adaptation

e Observed in NLP and machine learning

 Model averaging

* “Feature bagging”: train models on different
subset of features [Sutton et al, 2006] to prevent
‘weight undertraining”.

* Deal with co-adaptation

* Naive Bayes can sometimes do better than
discriminative methods

» Regularize uninformative features more [Wang/
Manning, 2012]




In this work...

« Sampling is inefficient - we integrate

e 50% random dropout, after 5 passes of the data,
1/32 = 3% of the data is still unseen

* No objective function was used in the original
work - we use an implied objective function

 Understanding dropout as Bayesian model
selection, and extensions




~ CLT and the Gaussian
Ley approximation

« Warm up with binary logistic regression
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Computing the gradient

e The most naive E(XY) =~ E(X)E(Y) does not work

e But we can sample from the Gaussian and

linearize
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This method works well

« Reduces complexity from O(Md) to O(M+d) for
M samples and data dimension d.
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Document classification results

 Improvements over plain LR and most previous
methods.

* Average accuracy and time on 9 datasets:

Methods Plain LR Dropout Fast Drop.

Accuracy

Time




Document classification results

o At or close to state of the art!

Methods\ Datasets | RT-2k IMDB  RTs  subj AthR CR MPQA | Average
MC dropout 89.8 912 79.2 933 86.7 82.0 86.0 86.88
training time 6363 6839 2264 2039 126 582 417 2661
Gaussian approx. 89.7 912 79.0 934 874 82.1 86.1 86.99
training time 240 1071 362 323 6 90 185 325
plain LR 88.2 89.5 772 913 83.6 804 84.6 84.97
training time 145 306 81 68 3 17 22 92
Previous results

TreeCRF[7] - - 713 - - 814 86.1 -
Vect. Sent.[8] 88.9  88.89 - 88.13 - - - -
RNN[9] - - 717 - - - 86.4 -
NBSVM[3] 89.45 91.22 794 932 879 81.8 86.3 87.03
{i:x; > 0} 788 232 22 25 346 21 4




But it still requires sampling!

« We need to compute several expectations

 Could just build a table, and table of partial
derivatives, a pain to implement. Here is a good
numerical approximation:
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We can even approximate the
) objective function directly!

 For binary LR, no linearizing and sampling is
needed at all!
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 Works slightly worse in practice compared to
sampling

 still retains over 80% of the improvement over
baseline



Relation to Bayesian model
selection

 We are in effect maximizing a lower bound on
the Bayesian evidence:
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Fast dropout in neural networks

 The fast dropout idea can be applied to neural
networks

e Each hidden unit has an input mean
and an input variance

e Outputs a mean and variance




Applies to different types of units

e Sigmoid unit:

= Ooa:z: x|, s%)dr ~ o P
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o Rectified linear unit: f(z) = max(0,z) 7T = W/S

v = / F@N (@, $2)dz = O(r)u + sN (1[0, 1)

 Can also apply to different classifiers, and
regression.




Can now train neural networks
with deterministic dropout!

We can now adjust o« and add more variance
freely if the one decided by dropout is

suboptimal

NN-1200-1200 plain

NN-1200-1200 det. Dropout

NN-300 MSE [LeCun 1998]
NN-800 [Simard 2003] 160

Real dropout [Hinton 2012] 105-120
79 with pretraining



More classification results

e Classification on some more datasets

NoDrop 94.6 90.5
F.Dropout 90 96.3 93.2 87 88
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e Test error (training error) for X-200-100-y

Sq.Error_liver | cardio | housing | CPU___

NoDrop 16 (3.1)  4320(90) 39(29) 1.5(1.2)

FDropout 10(9.5) 298(217) 35(32) 1.3 (1.4)



Conclusions

 Dropout training seems promising

* But doing real dropout is slow, sampling is
expensive

 Apply the Gaussian approximation

e Cheaper samples or completely deterministic
approximations!




The output variance of hidden units

« Wanted an overestimate. Not exact, but fairly
accurate
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Testing the assumptions

 The training objective functions
e Left: training on expected cross entropy (dropout)
e Right: training on cross entropy (plain LR)
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