
Fast deterministic dropout training

NIPS workshop
Sida Wang, Chris Manning

What is dropout training

•  Recently introduced by Hinton et al. in
“Improving neural networks by preventing co-
adaptation of feature detectors”

•  Randomly select some inputs for each unit
•  zero them
•  compute the gradient, make an update

•  repeat

Dropout training is promising

•  Won the ImageNet challenge by a margin

•  George Dahl et al. won the Merck challenge

•  Dropout seems to be an important ingredient

Preventing the danger of
co-adaptation

•  Observed in NLP and machine learning

•  Model averaging
•  “Feature bagging”: train models on different

subset of features [Sutton et al, 2006] to prevent
“weight undertraining”.

•  Deal with co-adaptation
•  Naïve Bayes can sometimes do better than

discriminative methods

•  Regularize uninformative features more [Wang/
Manning, 2012]

In this work…

•  Sampling is inefficient – we integrate
•  50% random dropout, after 5 passes of the data,

1/32 = 3% of the data is still unseen

•  No objective function was used in the original
work – we use an implied objective function

•  Understanding dropout as Bayesian model
selection, and extensions

CLT and the Gaussian
approximation

•  Warm up with binary logistic regression

and empirical evidence. We focus on logistic regression for simplicity, but the idea is also applicable
to other probabilistic discriminative models, and to neural networks.

2 The implied objective function, and its faster approximations

To avoid unnecessarily cumbersome notations, we illustrate the main idea with binary logistic re-
gression (LR) with a single training vector x, and label y 2 {0, 1}.

2.1 The implied objective function for dropout training

To train LR with dropout on data with dimension m, first sample z
i

⇠ Bernoulli(p
i

) for i = 1...m.
Here p

i

is the probability of not dropping out input x
i

. For neural networks, x is activation of the
previous layer. For LR, x is the data. Typically, pbias = 1 and p = 0.1 ⇠ 0.9 for everything else.
After sampling z = {z

i

}
i=1...m

we can compute the stochastic gradient descent (sgd) update as
follows:

�w = (y � �(wtD
z

x))D
z

x (1)
where D

z

= diag(z) 2 Rm⇥m, and �(x) = 1/(1 + e�x

) is the logistic function.

This update rule, applied over the training data over multiple passes, can be seen as a Monte Carlo
approximation to the following gradient:

�w̄ = E
z;z

i

⇠Bernoulli(p

i

)

[(y � �(wtD
z

x))D
z

x] (2)

The objective function with the above gradient is the expected conditional log-likelihood of the label
given the data with dropped out dimensions indicated by z, for y ⇠ Bernoulli(�(wtD

z

x))). This is
the implied objective function for dropout training:

L(w) = E
z

[log(p(y|D
z

x;w)] = E
z

[y log(�(wtD
z

x)) + (1� y) log(1� �(wtD
z

x))] (3)

Since we are just taking an expectation, the objective is still concave provided that the original
log-likelihood is concave, which it is for logistic regression.

Evaluating the expectation in (2) naively by summing over all possible z has complexity O(2

mm).
Rather than directly computing the expectation with respect to z, we propose a variable transfor-
mation that allows us to compute the expectation with respect to a simple random variable Y 2 R,
instead of z 2 Rm.

2.2 Faster approximations to the dropout objective

We make the observation that evaluating the objective function L(w) involves taking the expectation
with respect to the variable Y (z) = wtD

z

x =

P
m

i

w
i

x
i

z
i

, a weighted sum of Bernoulli random
variables. For most machine learning problems, {w

i

} typically form a unimodal distribution cen-
tered at 0, {x

i

} is either unimodal or in a fixed interval. In this case, Y can be well approximated by
a normal distribution even for relatively low dimensional data with m = 10. More technically, the
Lyapunov condition is generally satisfied for a weighted sum of Bernoulli random variables of the
form Y that are weighted by real data [5]. Then, Lyapunov’s central limit theorem states that Y (z)
tends to a normal distribution as m ! 1. We empirically verify that the approximation is good for
typical datasets of moderate dimensions, except when a couple of dimensions dominate all others.
Finally, let

S = E
z

[Y (z)] +
p

Var[Y (z)]✏ = µ
S

+ �
S

✏ (4)
be the approximating Gaussian, where ✏ ⇠ N (0, 1), E

z

[Y (z)] =
P

m

i

p
i

w
i

x
i

, and Var [Y (z)] =P
m

i

p
i

(1� p
i

)(w
i

x
i

)

2.

2.2.1 Gaussian approximation

Given good convergence, we note that drawing samples of the approximating Gaussian S of Y (z),
a constant time operation, is much cheaper than drawing samples directly of Y (z), which takes
O(m). This effect is very significant for high dimensional datasets. So without doing much, we
can already approximate the objective function (3) m times faster by sampling from S instead of

2

and empirical evidence. We focus on logistic regression for simplicity, but the idea is also applicable
to other probabilistic discriminative models, and to neural networks.

2 The implied objective function, and its faster approximations

To avoid unnecessarily cumbersome notations, we illustrate the main idea with binary logistic re-
gression (LR) with a single training vector x, and label y 2 {0, 1}.

2.1 The implied objective function for dropout training

To train LR with dropout on data with dimension m, first sample z
i

⇠ Bernoulli(p
i

) for i = 1...m.
Here p

i

is the probability of not dropping out input x
i

. For neural networks, x is activation of the
previous layer. For LR, x is the data. Typically, pbias = 1 and p = 0.1 ⇠ 0.9 for everything else.
After sampling z = {z

i

}
i=1...m

we can compute the stochastic gradient descent (sgd) update as
follows:

�w = (y � �(wtD
z

x))D
z

x (1)
where D

z

= diag(z) 2 Rm⇥m, and �(x) = 1/(1 + e�x

) is the logistic function.

This update rule, applied over the training data over multiple passes, can be seen as a Monte Carlo
approximation to the following gradient:

�w̄ = E
z;z

i

⇠Bernoulli(p

i

)

[(y � �(wtD
z

x))D
z

x] (2)

The objective function with the above gradient is the expected conditional log-likelihood of the label
given the data with dropped out dimensions indicated by z, for y ⇠ Bernoulli(�(wtD

z

x))). This is
the implied objective function for dropout training:

L(w) = E
z

[log(p(y|D
z

x;w)] = E
z

[y log(�(wtD
z

x)) + (1� y) log(1� �(wtD
z

x))] (3)

Since we are just taking an expectation, the objective is still concave provided that the original
log-likelihood is concave, which it is for logistic regression.

Evaluating the expectation in (2) naively by summing over all possible z has complexity O(2

mm).
Rather than directly computing the expectation with respect to z, we propose a variable transfor-
mation that allows us to compute the expectation with respect to a simple random variable Y 2 R,
instead of z 2 Rm.

2.2 Faster approximations to the dropout objective

We make the observation that evaluating the objective function L(w) involves taking the expectation
with respect to the variable Y (z) = wtD

z

x =

P
m

i

w
i

x
i

z
i

, a weighted sum of Bernoulli random
variables. For most machine learning problems, {w

i

} typically form a unimodal distribution cen-
tered at 0, {x

i

} is either unimodal or in a fixed interval. In this case, Y can be well approximated by
a normal distribution even for relatively low dimensional data with m = 10. More technically, the
Lyapunov condition is generally satisfied for a weighted sum of Bernoulli random variables of the
form Y that are weighted by real data [5]. Then, Lyapunov’s central limit theorem states that Y (z)
tends to a normal distribution as m ! 1. We empirically verify that the approximation is good for
typical datasets of moderate dimensions, except when a couple of dimensions dominate all others.
Finally, let

S = E
z

[Y (z)] +
p

Var[Y (z)]✏ = µ
S

+ �
S

✏ (4)
be the approximating Gaussian, where ✏ ⇠ N (0, 1), E

z

[Y (z)] =
P

m

i

p
i

w
i

x
i

, and Var [Y (z)] =P
m

i

p
i

(1� p
i

)(w
i

x
i

)

2.

2.2.1 Gaussian approximation

Given good convergence, we note that drawing samples of the approximating Gaussian S of Y (z),
a constant time operation, is much cheaper than drawing samples directly of Y (z), which takes
O(m). This effect is very significant for high dimensional datasets. So without doing much, we
can already approximate the objective function (3) m times faster by sampling from S instead of

2

and empirical evidence. We focus on logistic regression for simplicity, but the idea is also applicable
to other probabilistic discriminative models, and to neural networks.

2 The implied objective function, and its faster approximations

To avoid unnecessarily cumbersome notations, we illustrate the main idea with binary logistic re-
gression (LR) with a single training vector x, and label y 2 {0, 1}.

2.1 The implied objective function for dropout training

To train LR with dropout on data with dimension m, first sample z
i

⇠ Bernoulli(p
i

) for i = 1...m.
Here p

i

is the probability of not dropping out input x
i

. For neural networks, x is activation of the
previous layer. For LR, x is the data. Typically, pbias = 1 and p = 0.1 ⇠ 0.9 for everything else.
After sampling z = {z

i

}
i=1...m

we can compute the stochastic gradient descent (sgd) update as
follows:

�w = (y � �(wtD
z

x))D
z

x (1)
where D

z

= diag(z) 2 Rm⇥m, and �(x) = 1/(1 + e�x

) is the logistic function.

This update rule, applied over the training data over multiple passes, can be seen as a Monte Carlo
approximation to the following gradient:

�w̄ = E
z;z

i

⇠Bernoulli(p

i

)

[(y � �(wtD
z

x))D
z

x] (2)

The objective function with the above gradient is the expected conditional log-likelihood of the label
given the data with dropped out dimensions indicated by z, for y ⇠ Bernoulli(�(wtD

z

x))). This is
the implied objective function for dropout training:

L(w) = E
z

[log(p(y|D
z

x;w)] = E
z

[y log(�(wtD
z

x)) + (1� y) log(1� �(wtD
z

x))] (3)

Since we are just taking an expectation, the objective is still concave provided that the original
log-likelihood is concave, which it is for logistic regression.

Evaluating the expectation in (2) naively by summing over all possible z has complexity O(2

mm).
Rather than directly computing the expectation with respect to z, we propose a variable transfor-
mation that allows us to compute the expectation with respect to a simple random variable Y 2 R,
instead of z 2 Rm.

2.2 Faster approximations to the dropout objective

We make the observation that evaluating the objective function L(w) involves taking the expectation
with respect to the variable Y (z) = wtD

z

x =

P
m

i

w
i

x
i

z
i

, a weighted sum of Bernoulli random
variables. For most machine learning problems, {w

i

} typically form a unimodal distribution cen-
tered at 0, {x

i

} is either unimodal or in a fixed interval. In this case, Y can be well approximated by
a normal distribution even for relatively low dimensional data with m = 10. More technically, the
Lyapunov condition is generally satisfied for a weighted sum of Bernoulli random variables of the
form Y that are weighted by real data [5]. Then, Lyapunov’s central limit theorem states that Y (z)
tends to a normal distribution as m ! 1. We empirically verify that the approximation is good for
typical datasets of moderate dimensions, except when a couple of dimensions dominate all others.
Finally, let

S = E
z

[Y (z)] +
p

Var[Y (z)]✏ = µ
S

+ �
S

✏ (4)
be the approximating Gaussian, where ✏ ⇠ N (0, 1), E

z

[Y (z)] =
P

m

i

p
i

w
i

x
i

, and Var [Y (z)] =P
m

i

p
i

(1� p
i

)(w
i

x
i

)

2.

2.2.1 Gaussian approximation

Given good convergence, we note that drawing samples of the approximating Gaussian S of Y (z),
a constant time operation, is much cheaper than drawing samples directly of Y (z), which takes
O(m). This effect is very significant for high dimensional datasets. So without doing much, we
can already approximate the objective function (3) m times faster by sampling from S instead of

2

and empirical evidence. We focus on logistic regression for simplicity, but the idea is also applicable
to other probabilistic discriminative models, and to neural networks.

2 The implied objective function, and its faster approximations

To avoid unnecessarily cumbersome notations, we illustrate the main idea with binary logistic re-
gression (LR) with a single training vector x, and label y 2 {0, 1}.

2.1 The implied objective function for dropout training

To train LR with dropout on data with dimension m, first sample z
i

⇠ Bernoulli(p
i

) for i = 1...m.
Here p

i

is the probability of not dropping out input x
i

. For neural networks, x is activation of the
previous layer. For LR, x is the data. Typically, pbias = 1 and p = 0.1 ⇠ 0.9 for everything else.
After sampling z = {z

i

}
i=1...m

we can compute the stochastic gradient descent (sgd) update as
follows:

�w = (y � �(wtD
z

x))D
z

x (1)
where D

z

= diag(z) 2 Rm⇥m, and �(x) = 1/(1 + e�x

) is the logistic function.

This update rule, applied over the training data over multiple passes, can be seen as a Monte Carlo
approximation to the following gradient:

�w̄ = E
z;z

i

⇠Bernoulli(p

i

)

[(y � �(wtD
z

x))D
z

x] (2)

The objective function with the above gradient is the expected conditional log-likelihood of the label
given the data with dropped out dimensions indicated by z, for y ⇠ Bernoulli(�(wtD

z

x))). This is
the implied objective function for dropout training:

L(w) = E
z

[log(p(y|D
z

x;w)] = E
z

[y log(�(wtD
z

x)) + (1� y) log(1� �(wtD
z

x))] (3)

Since we are just taking an expectation, the objective is still concave provided that the original
log-likelihood is concave, which it is for logistic regression.

Evaluating the expectation in (2) naively by summing over all possible z has complexity O(2

mm).
Rather than directly computing the expectation with respect to z, we propose a variable transfor-
mation that allows us to compute the expectation with respect to a simple random variable Y 2 R,
instead of z 2 Rm.

2.2 Faster approximations to the dropout objective

We make the observation that evaluating the objective function L(w) involves taking the expectation
with respect to the variable Y (z) = wtD

z

x =

P
m

i

w
i

x
i

z
i

, a weighted sum of Bernoulli random
variables. For most machine learning problems, {w

i

} typically form a unimodal distribution cen-
tered at 0, {x

i

} is either unimodal or in a fixed interval. In this case, Y can be well approximated by
a normal distribution even for relatively low dimensional data with m = 10. More technically, the
Lyapunov condition is generally satisfied for a weighted sum of Bernoulli random variables of the
form Y that are weighted by real data [5]. Then, Lyapunov’s central limit theorem states that Y (z)
tends to a normal distribution as m ! 1. We empirically verify that the approximation is good for
typical datasets of moderate dimensions, except when a couple of dimensions dominate all others.
Finally, let

S = E
z

[Y (z)] +
p

Var[Y (z)]✏ = µ
S

+ �
S

✏ (4)
be the approximating Gaussian, where ✏ ⇠ N (0, 1), E

z

[Y (z)] =
P

m

i

p
i

w
i

x
i

, and Var [Y (z)] =P
m

i

p
i

(1� p
i

)(w
i

x
i

)

2.

2.2.1 Gaussian approximation

Given good convergence, we note that drawing samples of the approximating Gaussian S of Y (z),
a constant time operation, is much cheaper than drawing samples directly of Y (z), which takes
O(m). This effect is very significant for high dimensional datasets. So without doing much, we
can already approximate the objective function (3) m times faster by sampling from S instead of

2

and empirical evidence. We focus on logistic regression for simplicity, but the idea is also applicable
to other probabilistic discriminative models, and to neural networks.

2 The implied objective function, and its faster approximations

To avoid unnecessarily cumbersome notations, we illustrate the main idea with binary logistic re-
gression (LR) with a single training vector x, and label y 2 {0, 1}.

2.1 The implied objective function for dropout training

To train LR with dropout on data with dimension m, first sample z
i

⇠ Bernoulli(p
i

) for i = 1...m.
Here p

i

is the probability of not dropping out input x
i

. For neural networks, x is activation of the
previous layer. For LR, x is the data. Typically, pbias = 1 and p = 0.1 ⇠ 0.9 for everything else.
After sampling z = {z

i

}
i=1...m

we can compute the stochastic gradient descent (sgd) update as
follows:

�w = (y � �(wtD
z

x))D
z

x (1)
where D

z

= diag(z) 2 Rm⇥m, and �(x) = 1/(1 + e�x

) is the logistic function.

This update rule, applied over the training data over multiple passes, can be seen as a Monte Carlo
approximation to the following gradient:

�w̄ = E
z;z

i

⇠Bernoulli(p

i

)

[(y � �(wtD
z

x))D
z

x] (2)

The objective function with the above gradient is the expected conditional log-likelihood of the label
given the data with dropped out dimensions indicated by z, for y ⇠ Bernoulli(�(wtD

z

x))). This is
the implied objective function for dropout training:

L(w) = E
z

[log(p(y|D
z

x;w)] = E
z

[y log(�(wtD
z

x)) + (1� y) log(1� �(wtD
z

x))] (3)

Since we are just taking an expectation, the objective is still concave provided that the original
log-likelihood is concave, which it is for logistic regression.

Evaluating the expectation in (2) naively by summing over all possible z has complexity O(2

mm).
Rather than directly computing the expectation with respect to z, we propose a variable transfor-
mation that allows us to compute the expectation with respect to a simple random variable Y 2 R,
instead of z 2 Rm.

2.2 Faster approximations to the dropout objective

We make the observation that evaluating the objective function L(w) involves taking the expectation
with respect to the variable Y (z) = wtD

z

x =

P
m

i

w
i

x
i

z
i

, a weighted sum of Bernoulli random
variables. For most machine learning problems, {w

i

} typically form a unimodal distribution cen-
tered at 0, {x

i

} is either unimodal or in a fixed interval. In this case, Y can be well approximated by
a normal distribution even for relatively low dimensional data with m = 10. More technically, the
Lyapunov condition is generally satisfied for a weighted sum of Bernoulli random variables of the
form Y that are weighted by real data [5]. Then, Lyapunov’s central limit theorem states that Y (z)
tends to a normal distribution as m ! 1. We empirically verify that the approximation is good for
typical datasets of moderate dimensions, except when a couple of dimensions dominate all others.
Finally, let

S = E
z

[Y (z)] +
p

Var[Y (z)]✏ = µ
S

+ �
S

✏ (4)
be the approximating Gaussian, where ✏ ⇠ N (0, 1), E

z

[Y (z)] =
P

m

i

p
i

w
i

x
i

, and Var [Y (z)] =P
m

i

p
i

(1� p
i

)(w
i

x
i

)

2.

2.2.1 Gaussian approximation

Given good convergence, we note that drawing samples of the approximating Gaussian S of Y (z),
a constant time operation, is much cheaper than drawing samples directly of Y (z), which takes
O(m). This effect is very significant for high dimensional datasets. So without doing much, we
can already approximate the objective function (3) m times faster by sampling from S instead of

2

and empirical evidence. We focus on logistic regression for simplicity, but the idea is also applicable
to other probabilistic discriminative models, and to neural networks.

2 The implied objective function, and its faster approximations

To avoid unnecessarily cumbersome notations, we illustrate the main idea with binary logistic re-
gression (LR) with a single training vector x, and label y 2 {0, 1}.

2.1 The implied objective function for dropout training

To train LR with dropout on data with dimension m, first sample z
i

⇠ Bernoulli(p
i

) for i = 1...m.
Here p

i

is the probability of not dropping out input x
i

. For neural networks, x is activation of the
previous layer. For LR, x is the data. Typically, pbias = 1 and p = 0.1 ⇠ 0.9 for everything else.
After sampling z = {z

i

}
i=1...m

we can compute the stochastic gradient descent (sgd) update as
follows:

�w = (y � �(wtD
z

x))D
z

x (1)
where D

z

= diag(z) 2 Rm⇥m, and �(x) = 1/(1 + e�x

) is the logistic function.

This update rule, applied over the training data over multiple passes, can be seen as a Monte Carlo
approximation to the following gradient:

�w̄ = E
z;z

i

⇠Bernoulli(p

i

)

[(y � �(wtD
z

x))D
z

x] (2)

The objective function with the above gradient is the expected conditional log-likelihood of the label
given the data with dropped out dimensions indicated by z, for y ⇠ Bernoulli(�(wtD

z

x))). This is
the implied objective function for dropout training:

L(w) = E
z

[log(p(y|D
z

x;w)] = E
z

[y log(�(wtD
z

x)) + (1� y) log(1� �(wtD
z

x))] (3)

Since we are just taking an expectation, the objective is still concave provided that the original
log-likelihood is concave, which it is for logistic regression.

Evaluating the expectation in (2) naively by summing over all possible z has complexity O(2

mm).
Rather than directly computing the expectation with respect to z, we propose a variable transfor-
mation that allows us to compute the expectation with respect to a simple random variable Y 2 R,
instead of z 2 Rm.

2.2 Faster approximations to the dropout objective

We make the observation that evaluating the objective function L(w) involves taking the expectation
with respect to the variable Y (z) = wtD

z

x =

P
m

i

w
i

x
i

z
i

, a weighted sum of Bernoulli random
variables. For most machine learning problems, {w

i

} typically form a unimodal distribution cen-
tered at 0, {x

i

} is either unimodal or in a fixed interval. In this case, Y can be well approximated by
a normal distribution even for relatively low dimensional data with m = 10. More technically, the
Lyapunov condition is generally satisfied for a weighted sum of Bernoulli random variables of the
form Y that are weighted by real data [5]. Then, Lyapunov’s central limit theorem states that Y (z)
tends to a normal distribution as m ! 1. We empirically verify that the approximation is good for
typical datasets of moderate dimensions, except when a couple of dimensions dominate all others.
Finally, let

S = E
z

[Y (z)] +
p

Var[Y (z)]✏ = µ
S

+ �
S

✏ (4)
be the approximating Gaussian, where ✏ ⇠ N (0, 1), E

z

[Y (z)] =
P

m

i

p
i

w
i

x
i

, and Var [Y (z)] =P
m

i

p
i

(1� p
i

)(w
i

x
i

)

2.

2.2.1 Gaussian approximation

Given good convergence, we note that drawing samples of the approximating Gaussian S of Y (z),
a constant time operation, is much cheaper than drawing samples directly of Y (z), which takes
O(m). This effect is very significant for high dimensional datasets. So without doing much, we
can already approximate the objective function (3) m times faster by sampling from S instead of

2

This integral can be evaluated exactly for the rectified linear unit f(x) = max(0, x). Let r = µ/s,
then

⌫ =

Z 1

�1
f(x)N (x|µ, s2)dx = �(r)µ+ sN (r|0, 1) (13)

With dropout training, each hidden unit also has an output variance, which can be approximated
fairly well (see A.4).

20 40

10

20

30

40

50
−5

0

5

10

20 40

10

20

30

40

50

0

1

2

3

x 10
−3

−20 −15 −10 −5
0

1000

2000

3000

−0.1 0 0.1 0.2
0

1000

2000

3000

Figure 1: Top: MC dropout covariance matrix of the inputs of 10 random hidden units; Top-left:
trained to convergence; Top-right: at random initialization. The covariance is not completely diago-
nal once trained to convergence. Bottom: empirical input distribution of the input of a hidden unit.
Bottom-left: trained to convergence; Bottom-right: at initialization. We lose almost nothing here.

3.2 Training with backpropagation

The resulting neural network can be trained by backpropagation with an additional set of derivatives.
In normal backpropagation, one only need to keep @L

@µ

i

for each hidden unit i with input µ
i

. For
approximate dropout training, we need @L

@s

2
i

as well for input variance s2
i

. Where µ
i

= p
P

j

w
ij

⌫0
j

and s
i

= p(1� p)
P

j

⌫02
j

w2

ij

+ p⌧ 02
j

w2

ij

and ⌫0
i

, ⌧ 0
i

are the output mean and variance of the previous
layer.

3.3 The output layer

We still need to define what the cost function L is, which is task dependent. We outline how to do
approximate dropout for the final layer for one-vs-rest logistic units, linear units under squared loss,
and softmax units under their representative cost functions.

Logistic units with the cross-entropy loss function that can be well-approximated using the follow-
ing:

E
X⇠N (µ,s

2
)

[log(�(X))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (14)

⇡
p

1 + ⇡s2/8 log �
⇣ µp

1 + ⇡s2/8

⌘
(15)

Linear units with squared error loss can be computed exactly

E
X⇠N (µ,s

2
)

[(X � t)2] =

Z 1

�1
(x� t)2N (x|µ, s2)dx (16)

= s2 + (µ� t)2 (17)

Since s2 =

P
j

↵w2

j

x2

j

, this is L2 regularization.

5

z: 0 1 0 0 1

Computing the gradient
Y (z). Empirically, this approximation is within the variance of the direct MC approximation of (3)
by taking 200 samples of z.

Approximating the gradient introduces a complication while using samples from the Gaussian. The
gradient (2) involves not only Y (z) ! S, but also D

z

x directly:
rL(w) = E

z

[(y � �(Y (z)))D
z

x] (5)
Let f(Y) = f(Y (z)) = y � �(Y (z)) and let g(z) = D

z

x 2 Rm. Naively approximating
E

z

[f(Y (z))g(z)] by either E
S

[f(S)]E
z

[g(z)], or worse, by f(E
s

[S])E
z

[g(z)] works poorly in
terms of both approximation error and final performance. Note g(z) is a linear function and there-
fore E

z

[g(z)] = g(E
z

[z]) = diag(p)x. A good way to approximate (5) is by analytically taking the
expectation with respect to z

i

and then using a linear approximation to the conditional expectation.
More precisely, consider dimension i of the gradient:

@L(w)

@w
i

= E
z

[f(Y (z))x
i

z
i

]

=

X

z

i

2{0,1}

p(z
i

)z
i

x
i

E
z�i

|z
i

[f(Y (z))]

= p(z
i

= 1)x
i

E
z�i

|z
i

=1

[f(Y (z))]

⇡ p
i

x
i

E

S⇠N (µ

S

,�

2
S

)

[f(S)] +�µ
i

@E
T⇠N (µ,�

2
S

)

[f(T)]

@µ

����
µ=µ

S

+

��2

i

@E
T⇠N (µ

S

,�

2
)

[f(T)]

@�2

����
�

2
=�

2
S

!

= p
i

x
i

(↵(µ
S

,�2

S

) +�µ
i

�(µ
S

,�2

S

) +��2

i

�(µ
S

,�2

S

)) (6)
where z�i

is the collection of all other zs except z
i

, µ
S

,�
S

is defined in (4), �µ
i

= (1 � p
i

)x
i

w
i

,
��2

i

= �p
i

(1� p
i

)x2

i

w2

i

are the changes in µ
S

, �2

S

due to conditioning on z
i

. Note that the partial
derivatives as well as E

S⇠N (µ

S

,�

2
S

)

[f(S)] only need to be computed once per training case, since
they are independent of i.

↵,�, � can be computed by drawing K samples from S and takes time O(K). See A.2 for details.
In practice, using only � approximates the derivative to within the variance of successive MC com-
putations of the objective L (see figure 2). In our experiments, this is 2-30 times faster compared
to sampling (see figure 1 and table 1). While MC dropout becomes inefficient quickly with very
high dropout rate (> 0.8), the Gaussian approximation is fairly insensitive because it still gets all
the information from every data point (see 1).

2.2.2 Deterministic approximations

We can further improve the performance by using fast deterministic approximations. With a po-
tentially much faster deterministic approximation, randomness harmful to line-search is removed.
While not faster, we can deterministically “sample” from S. There is no analog of doing this with
the MC dropout method (it would be silly to permanently corrupt predetermined data dimensions).
In addition to taking the expectation as mentioned in 2.2.1, ↵,�, � are functions of µ

s

,�2

s

2 R, and
can be computed by 1-d numerical integration as defined in (14), (15), and (16). For even faster
speed, one can also tabulate ↵,�, � instead of computing them as needed. The function is smoother
if parameterized by µ

�

,� instead. However, numerical integration and a lookup table fail to scale to
multinomial LR. In that case, we can use the Unscented Transform (UST) instead of sampling [6].
The rest of the procedure remains unchanged from 2.2.1.

2.2.3 A closed-form approximation

Interestingly, a fairly accurate closed-from approximation is also possible by using the Gaussian
cummulative distribution function �(x) = 1p

2⇡

R
x

�1 e�t

2
/2dt to approximate the logistic function.

It can be shown by parameter differentiation with respect to s and then integrating with respect to s
that Z 1

�1
�(�x)N (x|µ, s)dx = �

✓
µp

��2

+ s2

◆
(7)

3

•  The most naïve E(XY) ≈ E(X)E(Y) does not work

•  But we can sample from the Gaussian and
linearize

Quality of the gradients

•  The approximate gradient vs. true gradient

A.3 Regularization by individual informativeness

While the Gaussian and deterministic approximations are more efficient than the direct MC com-
putation, it still does considerably more work than plain LR. We present another procedure that is
in a very similar spirit that is as fast as plain LR, but possibly less robust than dropout. It is a rein-
terpretation of the feature transformation described in [3] applied to Support Vector Machines. The
idea can be very easily applied to logistic regression. Let L

0

(w) = � log(p(y|x,w)) be the negative
log-likelihood. Define the cost function:

L(w) = L
0

(w) +
X

i,j

C
ij

w2

ij

(17)

The only difference from regular logistic regression is that C
ij

depends on how informative x
j

is
for label y = i, so that individually uninformative features are heavily regularized. For sparse
binary features a good choice is 1

C

ij

= | log p(x

j

|y=i)

p(x

j

|y 6=i)

| + ✏. More generally, one can either bin
the data to make it binary or fit a decision stump ⌧

ij

2 R, b
ij

2 {0, 1} to the data. We can set
1

C

ij

=

���log(p(bijxj

>⌧

ij

|y=i)

p(b

ij

x

j

>⌧

ij

|y 6=i)

���+ ✏.

A.4 Other Figures

−1 0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

MC dropout value

A
p

p
ro

xi
m

a
te

 v
a

lu
e

Naive
Gaussian approx.
MC dropout

Figure 2: Scatterplot of various approximations (y-axis) vs. direct MC dropout: Each point is a
random dimension of the gradient, with its x-value computed from MC dropout with 200 samples of
z, and its y-value computed by the method in the legend. MC dropout and Gaussian approximation
used 200 samples. Naive is the approximation defined after (5), by assuming that f(z) and g(z)
are independent. The RMSE for different MC dropout runs is 0.0305, and the RMSE between MC
dropout and Gaussian approximation is 0.0308, showing no difference between our approximation
and MC dropout training. The green line is the reference y = x.

8

This method works well

Substituting in �(x) ⇡ �(

p
⇡/8x), we get

Z 1

�1
�(x)N (x|µ, s2)dx ⇡ �

µp

1 + ⇡s2/8

!
(8)

This is an approximation that is used for Bayesian prediction when the posterior is approximated
by a Gaussian [mackay]. As we now have a closed-form approximation of ↵, one can also obtain
expressions for � and � by differentiating.

Furthermore, we can even approximate the objective function (3) in a closed-form that is easily
differentiable. The key expression is

E
Y⇠N (µ,s

2
)

[log(�(Y))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (9)

⇡ 1p
1 + ⇡s2/8

log �
⇣ µp

1 + ⇡s2/8

⌘
(10)

The actual objective as defined in (3) can be obtained from the above by observing that 1� �(x) =
sigma(�x). The gradient, or Hessian with respect to w can be found by analytically differentiating.

Finally, we can approximate the output variance
Var

Y⇠N (µ,s

2
)

[�(Y)] = E[�(Y)

2

]� E[�(y)]2 (11)

⇡ E[�(a(Y � b))]� E[�(y)]2 (12)

⇡ �

a(µ� b)p
1 + ⇡/8a2s2

!
� �

µp

1 + ⇡/8s2

!
2

(13)

by matching the values and derivatives at where �(x)2 = 1/2, reasonable values are a = 4 � 2

p
2

and b = � log(

p
2� 1).

3 Experiments

10
0

10
1

10
2

10
3

10
4

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

seconds spent in training

e
rr

o
r

ra
te

 in
 t

h
e

 v
a

lid
a

tio
n
 s

e
t

10
0

10
1

10
2

10
3

10
4

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

training iterations

e
rr

o
r

ra
te

 in
 t

h
e

 v
a

lid
a

tio
n
 s

e
t

Plain LR
Gaussian approx.
MC dropout

Figure 1: Validation errors vs. time spent in training (left), and number of iterations (right). trained
using batch gradient descent with Wolfe line search on the 20-newsgroup subtask alt.atheism vs.
religion.misc. 100 samples are used. For MC dropout, z

i

is sampled only for non-zero x
i

, with a
dropout rate of 0.5.

The accuracy and time taken are listed in table 1 for the datasets described in section A.1. The Gaus-
sian approximation is generally around 10 times faster than MC dropout and performs comparably
to NBSVM in [3]. Further speedup is possible by using one of the deterministic approximations
instead of sampling. While each iteration of the Gaussian approximation is still slower than LR, it
sometimes reaches a better validation performance in less time.

4

•  Reduces complexity from O(Md) to O(M+d) for
M samples and data dimension d.

Document classification results

•  Improvements over plain LR and most previous
methods.

•  Average accuracy and time on 9 datasets:

Methods Plain LR Dropout Fast Drop.

Accuracy 84.97 86.88 86.99
Time 92 2661 325

Document classification results

•  At or close to state of the art!

Methods\ Datasets RT-2k IMDB RTs subj AthR CR MPQA Average
MC dropout 89.8 91.2 79.2 93.3 86.7 82.0 86.0 86.88
training time 6363 6839 2264 2039 126 582 417 2661
Gaussian approx. 89.7 91.2 79.0 93.4 87.4 82.1 86.1 86.99
training time 240 1071 362 323 6 90 185 325
plain LR 88.2 89.5 77.2 91.3 83.6 80.4 84.6 84.97
training time 145 306 81 68 3 17 22 92

Previous results
TreeCRF[7] - - 77.3 - - 81.4 86.1 -
Vect. Sent.[8] 88.9 88.89 - 88.13 - - - -
RNN[9] - - 77.7 - - - 86.4 -
NBSVM[3] 89.45 91.22 79.4 93.2 87.9 81.8 86.3 87.03
|{i : x

i

> 0}| 788 232 22 25 346 21 4

Table 1: The main table of results. The top section contains the accuracy, and training time (in
seconds) for various datasets. 100 samples are used for both MC dropout and the Gaussian approx-
imation. The last row shows the average number of non-sparse dimensions in the dataset.

4 Conclusions

Dropout training, as originally proposed, was intended for neural networks where hidden units are
dropped out, instead of the data. Fast dropout is directly applicable to dropping out the final hidden
layer of neural networks: the gradients for backpropagation to the previous layer, dL

dx

, can be com-
puted by the procedure described in 2.2.1 replacing x with w. This is a topic of ongoing research.

We presented a way of getting the benefits of dropout training for LR without actually sampling,
thereby speeding up the process by a factor of 2-30 times. For high dimensional datasets (over
a few hundred), each iteration of fast dropout is only about 2 times slower than plain LR. While
the objective for fast dropout is the same as MC dropout in the long run, because fast dropout is
not losing any information in individual training cases, it is capable of doing more work in each
iteration, reaching the same validation set performance in a shorter time than LR, and generalizing
better.

References

[1] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. “Improving neural networks by preventing co-adaptation of feature detectors”. In:
CoRR abs/1207.0580 (2012).

[2] Andrew Y. Ng and Michael I. Jordan. “On discriminative vs. generative classifiers: A compar-
ison of logistic regression and naive bayes”. In: Proceedings of NIPS. Vol. 2. 2002, pp. 841–
848.

[3] Sida Wang and Christopher Manning. “Baselines and Bigrams: Simple, Good Sentiment and
Topic Classification”. In: Proceedings of the ACL. 2012, pp. 90–94.

[4] Charles Sutton, Michael Sindelar, and Andrew McCallum. “Reducing Weight Undertraining
in Structured Discriminative Learning”. In: Conference on Human Language Technology and
North American Association for Computational Linguistics (HLT-NAACL). 2006.

[5] Erich L. Lehmann. Elements of Large-Sample Theory. Springer, 1998, p. 101. ISBN:
03873985956.

[6] Simon J. Julier and Jeffrey K. Uhlmann. “A New Extension of the Kalman Filter to Nonlinear
Systems”. In: Proceedings of AeroSense: Simulations and Controls. 1997, pp. 182–193.

[7] Tetsuji Nakagawa, Kentaro Inui, and Sadao Kurohashi. “Dependency tree-based sentiment
classification using CRFs with hidden variables”. In: Proceedings of ACL:HLT. 2010.

[8] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christo-
pher Potts. “Learning Word Vectors for Sentiment Analysis”. In: Proceedings of the ACL.
2011.

5

But it still requires sampling!

•  We need to compute several expectations

•  Could just build a table, and table of partial
derivatives, a pain to implement. Here is a good
numerical approximation: Substituting in �(x) ⇡ �(

p
⇡/8x), we get

Z 1

�1
�(x)N (x|µ, s2)dx ⇡ �

µp

1 + ⇡s2/8

!
(8)

This is an approximation that is used for Bayesian prediction when the posterior is approximated
by a Gaussian [mackay]. As we now have a closed-form approximation of ↵, one can also obtain
expressions for � and � by differentiating.

Furthermore, we can even approximate the objective function (3) in a closed-form that is easily
differentiable. The key expression is

E
Y⇠N (µ,s

2
)

[log(�(Y))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (9)

⇡ 1p
1 + ⇡s2/8

log �
⇣ µp

1 + ⇡s2/8

⌘
(10)

The actual objective as defined in (3) can be obtained from the above by observing that 1� �(x) =
sigma(�x). The gradient, or Hessian with respect to w can be found by analytically differentiating.

Finally, we can approximate the output variance
Var

Y⇠N (µ,s

2
)

[�(Y)] = E[�(Y)

2

]� E[�(y)]2 (11)

⇡ E[�(a(Y � b))]� E[�(y)]2 (12)

⇡ �

a(µ� b)p
1 + ⇡/8a2s2

!
� �

µp

1 + ⇡/8s2

!
2

(13)

by matching the values and derivatives at where �(x)2 = 1/2, reasonable values are a = 4 � 2

p
2

and b = � log(

p
2� 1).

3 Experiments

10
0

10
1

10
2

10
3

10
4

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

seconds spent in training

e
rr

o
r

ra
te

 in
 t
h
e
 v

a
lid

a
tio

n
 s

e
t

10
0

10
1

10
2

10
3

10
4

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

training iterations

e
rr

o
r

ra
te

 in
 t
h
e
 v

a
lid

a
tio

n
 s

e
t

Plain LR
Gaussian approx.
MC dropout

Figure 1: Validation errors vs. time spent in training (left), and number of iterations (right). trained
using batch gradient descent with Wolfe line search on the 20-newsgroup subtask alt.atheism vs.
religion.misc. 100 samples are used. For MC dropout, z

i

is sampled only for non-zero x
i

, with a
dropout rate of 0.5.

The accuracy and time taken are listed in table 1 for the datasets described in section A.1. The Gaus-
sian approximation is generally around 10 times faster than MC dropout and performs comparably
to NBSVM in [3]. Further speedup is possible by using one of the deterministic approximations
instead of sampling. While each iteration of the Gaussian approximation is still slower than LR, it
sometimes reaches a better validation performance in less time.

4

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mu

E
xp

e
ct

a
tio

n

s=1
1 approx
s=3
3 approx
s=5
5 approx

This integral can be evaluated exactly for the rectified linear unit f(x) = max(0, x). Let r = µ/s,
then

⌫ =

Z 1

�1
f(x)N (x|µ, s2)dx = �(r)µ+ sN (r|0, 1) (13)

With dropout training, each hidden unit also has an output variance, which can be approximated
fairly well (see A.4).

20 40

10

20

30

40

50
−5

0

5

10

20 40

10

20

30

40

50

0

1

2

3

x 10
−3

−20 −15 −10 −5
0

1000

2000

3000

−0.1 0 0.1 0.2
0

1000

2000

3000

Figure 1: Top: MC dropout covariance matrix of the inputs of 10 random hidden units; Top-left:
trained to convergence; Top-right: at random initialization. The covariance is not completely diago-
nal once trained to convergence. Bottom: empirical input distribution of the input of a hidden unit.
Bottom-left: trained to convergence; Bottom-right: at initialization. We lose almost nothing here.

3.2 Training with backpropagation

The resulting neural network can be trained by backpropagation with an additional set of derivatives.
In normal backpropagation, one only need to keep @L

@µ

i

for each hidden unit i with input µ
i

. For
approximate dropout training, we need @L

@s

2
i

as well for input variance s2
i

. Where µ
i

= p
P

j

w
ij

⌫0
j

and s
i

= p(1� p)
P

j

⌫02
j

w2

ij

+ p⌧ 02
j

w2

ij

and ⌫0
i

, ⌧ 0
i

are the output mean and variance of the previous
layer.

3.3 The output layer

We still need to define what the cost function L is, which is task dependent. We outline how to do
approximate dropout for the final layer for one-vs-rest logistic units, linear units under squared loss,
and softmax units under their representative cost functions.

Logistic units with the cross-entropy loss function that can be well-approximated using the follow-
ing:

E
X⇠N (µ,s

2
)

[log(�(X))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (14)

⇡
p

1 + ⇡s2/8 log �
⇣ µp

1 + ⇡s2/8

⌘
(15)

Linear units with squared error loss can be computed exactly

E
X⇠N (µ,s

2
)

[(X � t)2] =

Z 1

�1
(x� t)2N (x|µ, s2)dx (16)

= s2 + (µ� t)2 (17)

Since s2 =

P
j

↵w2

j

x2

j

, this is L2 regularization.

5

We can even approximate the
objective function directly!

•  For binary LR, no linearizing and sampling is
needed at all!

•  Works slightly worse in practice compared to
sampling

•  still retains over 80% of the improvement over
baseline

the MC dropout method (it would be silly to permanently corrupt predetermined data dimensions).
In addition to taking the expectation as mentioned in 2.2.1, ↵,�, � are functions of µ

s

,�2

s

2 R, and
can be computed by 1-d numerical integration as defined in (18), (19), and (20). Simpson’s method
on [µ�4�, µ+4�] works quite well. One can also integrate the logit-normal distribution parameter-
ized by µ and � on [0, 1], but that is less stable numerically due to potentially huge masses at either
end [6]. Doing numerical integration online takes as long as using 200 samples. Because we do
not need that much accuracy in practice, numerical integration is not recommended. For even faster
speed, one can also tabulate ↵,�, � instead of computing them as needed. The function is smoother
if parameterized by µ

�

,� instead. However, numerical integration and a lookup table fail to scale to
multinomial LR. In that case, we can use the Unscented Transform (UST) instead of sampling [7].
The rest of the procedure remains unchanged from 2.2.1.

2.2.3 A closed-form approximation

Interestingly, a fairly accurate closed-from approximation is also possible by using the Gaussian
cummulative distribution function �(x) = 1p

2⇡

R
x

�1 e�t

2
/2dt to approximate the logistic function.

It can be shown by parameter differentiation with respect to s and then integrating with respect to s
that Z 1

�1
�(�x)N (x|µ, s)dx = �

✓
µp

��2

+ s2

◆
(8)

Substituting in �(x) ⇡ �(

p
⇡/8x), we get

Z 1

�1
�(x)N (x|µ, s2)dx ⇡ �

µp

1 + ⇡s2/8

!
(9)

This is an approximation that is used for Bayesian prediction when the posterior is approximated by
a Gaussian [8]. As we now have a closed-form approximation of ↵, one can also obtain expressions
for � and � by differentiating.

Furthermore, we can even approximate the objective function (7) in a closed-form that is easily
differentiable:

E
Y⇠N (µ,s

2
)

[log(�(Y))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (10)

⇡
p

1 + ⇡s2/8 log �
⇣ µp

1 + ⇡s2/8

⌘
(11)

The actual objective as defined in (3) can be obtained from the above by observing that 1� �(x) =
�(�x). The gradient, or Hessian with respect to w can be found by analytically differentiating.

3 Fast dropout for neural networks

Dropout training, as originally proposed, was intended for neural networks where hidden units are
dropped out, instead of the data. Fast dropout is directly applicable to dropping out the final hidden
layer of neural networks. In this section, we approximately extend our technique to deep neural
networks and show how to do it for several popular types of hidden units and output units.

3.1 The hidden layers

Under dropout training, each hidden unit takes a random variable as input, and produces a random
variable as output. Because of the CLT, we may approximate the inputs as Gaussians and character-
ize the outputs by their means and variances. An additional complication is that the inputs to hidden
units have a covariance, which is close to diagonal in practice as shown in figure 1.

Consider any hidden unit in dropout training, we may approximate its input as a Gaussian variable
X ⇠ N (x|µ, s2), which leads to its output mean and variance ⌫, ⌧2. For the commonly used
sigmoid unit

⌫ =

Z 1

�1
�(x)N (x|µ, s2)dx ⇡ �

µp

1 + ⇡s2/8

!
(12)

4

Relation to Bayesian model
selection

•  We are in effect maximizing a lower bound on
the Bayesian evidence:

•  Under the model

Substituting in �(x) ⇡ �(

p
⇡/8x), we get

Z 1

�1
�(x)N (x|µ, s2)dx ⇡ �

µp

1 + ⇡s2/8

!
(8)

This is an approximation that is used for Bayesian prediction when the posterior is approximated
by a Gaussian [mackay]. As we now have a closed-form approximation of ↵, one can also obtain
expressions for � and � by differentiating.

Furthermore, we can even approximate the objective function (3) in a closed-form that is easily
differentiable. The key expression is

E
Y⇠N (µ,s

2
)

[log(�(Y))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (9)

⇡ 1p
1 + ⇡s2/8

log �
⇣ µp

1 + ⇡s2/8

⌘
(10)

The actual objective as defined in (3) can be obtained from the above by observing that 1� �(x) =
sigma(�x). The gradient, or Hessian with respect to w can be found by analytically differentiating.

Finally, we can approximate the output variance

Var

Y⇠N (µ,s

2
)

[�(Y)] = E[�(Y)

2

]� E[�(y)]2 (11)

⇡ E[�(a(Y � b))]� E[�(y)]2 (12)

⇡ �

a(µ� b)p
1 + ⇡/8a2s2

!
� �

µp

1 + ⇡/8s2

!
2

(13)

by matching the values and derivatives at where �(x)2 = 1/2, reasonable values are a = 4 � 2

p
2

and b = � log(

p
2� 1).

3 Relation to Bayesian model selection

L(w) = E
z;z

i

⇠Bernoulli(p

i

)

[log p(y|wTD
z

x)] (14)
⇡ E

Y⇠N (E[w

T

D

z

x],Var[w

T

D

z

x])

[log(y|Y)] (15)

= E
w:w

i

⇠N (µ

i

,↵µ

2
i

)

[log p(y|wTx)] (16)

 logE
w:w

i

⇠N (µ

i

,↵µ

2
i

)

[p(y|wTx)] (17)

= log(M
µ

) (18)

M
µ

=

R
p(D|w)p(w|µ)dw is the Bayesian evidence.

4 Experiments

The accuracy and time taken are listed in table 1 for the datasets described in section A.1. The Gaus-
sian approximation is generally around 10 times faster than MC dropout and performs comparably
to NBSVM in [3]. Further speedup is possible by using one of the deterministic approximations
instead of sampling. While each iteration of the Gaussian approximation is still slower than LR, it
sometimes reaches a better validation performance in less time.

5 Conclusions

Dropout training, as originally proposed, was intended for neural networks where hidden units are
dropped out, instead of the data. Fast dropout is directly applicable to dropping out the final hidden
layer of neural networks: the gradients for backpropagation to the previous layer, dL

dx

, can be com-
puted by the procedure described in 2.2.1 replacing x with w. This is a topic of ongoing research.

4

Substituting in �(x) ⇡ �(

p
⇡/8x), we get

Z 1

�1
�(x)N (x|µ, s2)dx ⇡ �

µp

1 + ⇡s2/8

!
(8)

This is an approximation that is used for Bayesian prediction when the posterior is approximated
by a Gaussian [mackay]. As we now have a closed-form approximation of ↵, one can also obtain
expressions for � and � by differentiating.

Furthermore, we can even approximate the objective function (3) in a closed-form that is easily
differentiable. The key expression is

E
Y⇠N (µ,s

2
)

[log(�(Y))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (9)

⇡ 1p
1 + ⇡s2/8

log �
⇣ µp

1 + ⇡s2/8

⌘
(10)

The actual objective as defined in (3) can be obtained from the above by observing that 1� �(x) =
sigma(�x). The gradient, or Hessian with respect to w can be found by analytically differentiating.

Finally, we can approximate the output variance

Var

Y⇠N (µ,s

2
)

[�(Y)] = E[�(Y)

2

]� E[�(y)]2 (11)

⇡ E[�(a(Y � b))]� E[�(y)]2 (12)

⇡ �

a(µ� b)p
1 + ⇡/8a2s2

!
� �

µp

1 + ⇡/8s2

!
2

(13)

by matching the values and derivatives at where �(x)2 = 1/2, reasonable values are a = 4 � 2

p
2

and b = � log(

p
2� 1).

3 Relation to Bayesian model selection

L(µ) = E
z;z

i

⇠Bernoulli(p

i

)

[log p(y|µTD
z

x)] (14)
⇡ E

Y⇠N (E[µ

T

D

z

x],Var[µ

T

D

z

x])

[log(y|Y)] (15)

= E
w:w

i

⇠N (µ

i

,↵µ

2
i

)

[log p(y|wTx)] (16)

 logE
w:w

i

⇠N (µ

i

,↵µ

2
i

)

[p(y|wTx)] (17)

= log(M
µ

) (18)

M
µ

=

R
p(D|w)p(w|µ)dw is the Bayesian evidence. p(w

i

|µ
i

) = N (w
i

|µ
i

,↵µ2

i

)

4 Experiments

The accuracy and time taken are listed in table 1 for the datasets described in section A.1. The Gaus-
sian approximation is generally around 10 times faster than MC dropout and performs comparably
to NBSVM in [3]. Further speedup is possible by using one of the deterministic approximations
instead of sampling. While each iteration of the Gaussian approximation is still slower than LR, it
sometimes reaches a better validation performance in less time.

5 Conclusions

Dropout training, as originally proposed, was intended for neural networks where hidden units are
dropped out, instead of the data. Fast dropout is directly applicable to dropping out the final hidden
layer of neural networks: the gradients for backpropagation to the previous layer, dL

dx

, can be com-
puted by the procedure described in 2.2.1 replacing x with w. This is a topic of ongoing research.

4

Substituting in �(x) ⇡ �(

p
⇡/8x), we get

Z 1

�1
�(x)N (x|µ, s2)dx ⇡ �

µp

1 + ⇡s2/8

!
(8)

This is an approximation that is used for Bayesian prediction when the posterior is approximated
by a Gaussian [mackay]. As we now have a closed-form approximation of ↵, one can also obtain
expressions for � and � by differentiating.

Furthermore, we can even approximate the objective function (3) in a closed-form that is easily
differentiable. The key expression is

E
Y⇠N (µ,s

2
)

[log(�(Y))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (9)

⇡ 1p
1 + ⇡s2/8

log �
⇣ µp

1 + ⇡s2/8

⌘
(10)

The actual objective as defined in (3) can be obtained from the above by observing that 1� �(x) =
sigma(�x). The gradient, or Hessian with respect to w can be found by analytically differentiating.

Finally, we can approximate the output variance
Var

Y⇠N (µ,s

2
)

[�(Y)] = E[�(Y)

2

]� E[�(y)]2 (11)

⇡ E[�(a(Y � b))]� E[�(y)]2 (12)

⇡ �

a(µ� b)p
1 + ⇡/8a2s2

!
� �

µp

1 + ⇡/8s2

!
2

(13)

by matching the values and derivatives at where �(x)2 = 1/2, reasonable values are a = 4 � 2

p
2

and b = � log(

p
2� 1).

3 Relation to Bayesian model selection

L(µ) = E
z;z

i

⇠Bernoulli(p

i

)

[log p(y|µTD
z

x)] (14)
⇡ E

Y⇠N (E[µ

T

D

z

x],Var[µ

T

D

z

x])

[log(y|Y)] (15)

= E
w:w

i

⇠N (µ

i

,↵µ

2
i

)

[log p(y|wTx)] (16)

 logE
w:w

i

⇠N (µ

i

,↵µ

2
i

)

[p(y|wTx)] (17)

= log(M
µ

) (18)

M
µ

=

R
p(D|w)p(w|µ)dw is the Bayesian evidence. p(w

i

|µ
i

) = N (w
i

|µ
i

,↵µ2

i

)

and

p(y|x,w) = �(ywTx)

4 Experiments

The accuracy and time taken are listed in table 1 for the datasets described in section A.1. The Gaus-
sian approximation is generally around 10 times faster than MC dropout and performs comparably
to NBSVM in [3]. Further speedup is possible by using one of the deterministic approximations
instead of sampling. While each iteration of the Gaussian approximation is still slower than LR, it
sometimes reaches a better validation performance in less time.

5 Conclusions

Dropout training, as originally proposed, was intended for neural networks where hidden units are
dropped out, instead of the data. Fast dropout is directly applicable to dropping out the final hidden

4

Unfortunately, the best way to compute the cross-entropy loss for softmax seems to be sampling
from the input Gaussian directly (See A.3). Sampling can be applied to any output units with any
loss function. Unscented transform can be used in place of random sampling, trading accuracy for
faster speed.

Unlike the best practice in real dropout, the test time procedure for approximate dropout is exactly
the same as the training time procedure, with no weight halving needed. One shortcoming is the
training implementation does become more complicated, mainly in the backpropagation stage, while
the network function is straightforward. In the case when we are not concerned about training time,
we can still apply deterministic dropout at test time, instead of using the weight halving heuristics
that does not exactly match the training objective that is optimized. This alone can give a noticeable
improvement in test performance without much extra work.

4 Relation to Bayesian model selection

Once we make the Gaussian approximation, there is an alternative interpretation of where the vari-
ance comes from. In the dropout framework, the variance comes from the dropout variable z. Under
the alternative interpretation where w is a random variable, we can view dropout training as max-
imizing a lower bound on the Bayesian marginal likelihood in a class of models M

µ

indexed by
µ 2 Rm. Concretely, consider random variables w

i

⇠ N (µ
i

,↵µ2

i

), then the dropout objective

L(w) = E
z;z

i

⇠Bernoulli(p

i

)

[log p(y|wTD
z

x)]

⇡ E
Y⇠N (E[w

T

D

z

x],Var[w

T

D

z

x])

[log p(y|Y)]

= E
v:v

i

⇠N (µ

i

,↵µ

2
i

)

[log p(y|vTx)]

 logE
v:v

i

⇠N (µ

i

,↵µ

2
i

)

[p(y|vTx)]
= log(M

µ

)

where M
µ

=

R
p(D|v)p(v|µ)dv is the Bayesian evidence. p(v

i

|µ
i

) = N (v
i

|µ
i

,↵µ2

i

) and
p(y|vTx) = �(vTx)y(1 � �(vTx))1�y is the logistic model. For dropout training, µ = w/p
and ↵ = (1� p)/p.

Here the variance of v is tied to its magnitude, so a larger weight is only beneficial when it is robust
to noise. While ↵ can be determined by the dropout process, we are also free to choose ↵ and we
find empirically that using a slightly larger ↵ than that determined by dropout often perform slightly
better.

5 Experiments

Figure 2 shows that the quality of the gradient approximation using Gaussian samples are compa-
rable to the difference between different MC dropout runs with 200 samples. Figures 3 and 4 show
that, under identical settings, the Gaussian approximation is much faster than MC dropout, and have
very similar training profile. Both the Gaussian approximation and the MC dropout training re-
duce validation error rate by about 30% over plain LR when trained to convergence, without ever
overfitting.

Method Plain Aprx. Drp. A.D.+Var Prev. SotA
#Errors 182 124 110 150 30

Table 1: Neural network on MNIST: Results on MNIST with 2 hidden layers of 1200 units each.
A.D.+Var is approximate dropout plus more artificial variance by increasing ↵. Prev. is the best
previous result without using domain knowledge [1]. SotA is the state of the art result on the test set.

The accuracy and time taken are listed in table 2 for the datasets described in section A.1. The Gaus-
sian approximation is generally around 10 times faster than MC dropout and performs comparably
to NBSVM in [3]. Further speedup is possible by using one of the deterministic approximations
instead of sampling. While each iteration of the Gaussian approximation is still slower than LR, it
sometimes reaches a better validation performance in less time.

6

Fast dropout in neural networks

•  The fast dropout idea can be applied to neural
networks

•  Each hidden unit has an input mean

 and an input variance

•  Outputs a mean and variance

This integral can be evaluated exactly for the rectified linear unit f(x) = max(0, x). Let r = µ/s,
then

⌫ =

Z 1

�1
f(x)N (x|µ, s2)dx = �(r)µ+ sN (r|0, 1) (13)

With dropout training, each hidden unit also has an output variance, which can be approximated
fairly well (see A.4).

20 40

10

20

30

40

50
−5

0

5

10

20 40

10

20

30

40

50

0

1

2

3

x 10
−3

−20 −15 −10 −5
0

1000

2000

3000

−0.1 0 0.1 0.2
0

1000

2000

3000

Figure 1: Top: MC dropout covariance matrix of the inputs of 10 random hidden units; Top-left:
trained to convergence; Top-right: at random initialization. The covariance is not completely diago-
nal once trained to convergence. Bottom: empirical input distribution of the input of a hidden unit.
Bottom-left: trained to convergence; Bottom-right: at initialization. We lose almost nothing here.

3.2 Training with backpropagation

The resulting neural network can be trained by backpropagation with an additional set of derivatives.
In normal backpropagation, one only need to keep @L

@µ

i

for each hidden unit i with input µ
i

. For
approximate dropout training, we need @L

@s

2
i

as well for input variance s2
i

. Where µ
i

= p
P

j

w
ij

⌫0
j

and s
i

= p(1� p)
P

j

⌫02
j

w2

ij

+ p⌧ 02
j

w2

ij

and ⌫0
i

, ⌧ 0
i

are the output mean and variance of the previous
layer.

3.3 The output layer

We still need to define what the cost function L is, which is task dependent. We outline how to do
approximate dropout for the final layer for one-vs-rest logistic units, linear units under squared loss,
and softmax units under their representative cost functions.

Logistic units with the cross-entropy loss function that can be well-approximated using the follow-
ing:

E
X⇠N (µ,s

2
)

[log(�(X))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (14)

⇡
p

1 + ⇡s2/8 log �
⇣ µp

1 + ⇡s2/8

⌘
(15)

Linear units with squared error loss can be computed exactly

E
X⇠N (µ,s

2
)

[(X � t)2] =

Z 1

�1
(x� t)2N (x|µ, s2)dx (16)

= s2 + (µ� t)2 (17)

Since s2 =

P
j

↵w2

j

x2

j

, this is L2 regularization.

5

Applies to different types of units

•  Sigmoid unit:

•  Rectified linear unit:

•  Can also apply to different classifiers, and
regression.

This integral can be evaluated exactly for the rectified linear unit f(x) = max(0, x). Let r = µ/s,
then

⌫ =

Z 1

�1
f(x)N (x|µ, s2)dx = �(r)µ+ sN (r|0, 1) (13)

With dropout training, each hidden unit also has an output variance, which can be approximated
fairly well (see A.4).

20 40

10

20

30

40

50
−5

0

5

10

20 40

10

20

30

40

50

0

1

2

3

x 10
−3

−20 −15 −10 −5
0

1000

2000

3000

−0.1 0 0.1 0.2
0

1000

2000

3000

Figure 1: Top: MC dropout covariance matrix of the inputs of 10 random hidden units; Top-left:
trained to convergence; Top-right: at random initialization. The covariance is not completely diago-
nal once trained to convergence. Bottom: empirical input distribution of the input of a hidden unit.
Bottom-left: trained to convergence; Bottom-right: at initialization. We lose almost nothing here.

3.2 Training with backpropagation

The resulting neural network can be trained by backpropagation with an additional set of derivatives.
In normal backpropagation, one only need to keep @L

@µ

i

for each hidden unit i with input µ
i

. For
approximate dropout training, we need @L

@s

2
i

as well for input variance s2
i

. Where µ
i

= p
P

j

w
ij

⌫0
j

and s
i

= p(1� p)
P

j

⌫02
j

w2

ij

+ p⌧ 02
j

w2

ij

and ⌫0
i

, ⌧ 0
i

are the output mean and variance of the previous
layer.

3.3 The output layer

We still need to define what the cost function L is, which is task dependent. We outline how to do
approximate dropout for the final layer for one-vs-rest logistic units, linear units under squared loss,
and softmax units under their representative cost functions.

Logistic units with the cross-entropy loss function that can be well-approximated using the follow-
ing:

E
X⇠N (µ,s

2
)

[log(�(X))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (14)

⇡
p

1 + ⇡s2/8 log �
⇣ µp

1 + ⇡s2/8

⌘
(15)

Linear units with squared error loss can be computed exactly

E
X⇠N (µ,s

2
)

[(X � t)2] =

Z 1

�1
(x� t)2N (x|µ, s2)dx (16)

= s2 + (µ� t)2 (17)

Since s2 =

P
j

↵w2

j

x2

j

, this is L2 regularization.

5

This integral can be evaluated exactly for the rectified linear unit f(x) = max(0, x). Let r = µ/s,
then

⌫ =

Z 1

�1
f(x)N (x|µ, s2)dx = �(r)µ+ sN (r|0, 1) (13)

With dropout training, each hidden unit also has an output variance, which can be approximated
fairly well (see A.4).

20 40

10

20

30

40

50
−5

0

5

10

20 40

10

20

30

40

50

0

1

2

3

x 10
−3

−20 −15 −10 −5
0

1000

2000

3000

−0.1 0 0.1 0.2
0

1000

2000

3000

Figure 1: Top: MC dropout covariance matrix of the inputs of 10 random hidden units; Top-left:
trained to convergence; Top-right: at random initialization. The covariance is not completely diago-
nal once trained to convergence. Bottom: empirical input distribution of the input of a hidden unit.
Bottom-left: trained to convergence; Bottom-right: at initialization. We lose almost nothing here.

3.2 Training with backpropagation

The resulting neural network can be trained by backpropagation with an additional set of derivatives.
In normal backpropagation, one only need to keep @L

@µ

i

for each hidden unit i with input µ
i

. For
approximate dropout training, we need @L

@s

2
i

as well for input variance s2
i

. Where µ
i

= p
P

j

w
ij

⌫0
j

and s
i

= p(1� p)
P

j

⌫02
j

w2

ij

+ p⌧ 02
j

w2

ij

and ⌫0
i

, ⌧ 0
i

are the output mean and variance of the previous
layer.

3.3 The output layer

We still need to define what the cost function L is, which is task dependent. We outline how to do
approximate dropout for the final layer for one-vs-rest logistic units, linear units under squared loss,
and softmax units under their representative cost functions.

Logistic units with the cross-entropy loss function that can be well-approximated using the follow-
ing:

E
X⇠N (µ,s

2
)

[log(�(X))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (14)

⇡
p

1 + ⇡s2/8 log �
⇣ µp

1 + ⇡s2/8

⌘
(15)

Linear units with squared error loss can be computed exactly

E
X⇠N (µ,s

2
)

[(X � t)2] =

Z 1

�1
(x� t)2N (x|µ, s2)dx (16)

= s2 + (µ� t)2 (17)

Since s2 =

P
j

↵w2

j

x2

j

, this is L2 regularization.

5

the MC dropout method (it would be silly to permanently corrupt predetermined data dimensions).
In addition to taking the expectation as mentioned in 2.2.1, ↵,�, � are functions of µ

s

,�2

s

2 R, and
can be computed by 1-d numerical integration as defined in (18), (19), and (20). Simpson’s method
on [µ�4�, µ+4�] works quite well. One can also integrate the logit-normal distribution parameter-
ized by µ and � on [0, 1], but that is less stable numerically due to potentially huge masses at either
end [6]. Doing numerical integration online takes as long as using 200 samples. Because we do
not need that much accuracy in practice, numerical integration is not recommended. For even faster
speed, one can also tabulate ↵,�, � instead of computing them as needed. The function is smoother
if parameterized by µ

�

,� instead. However, numerical integration and a lookup table fail to scale to
multinomial LR. In that case, we can use the Unscented Transform (UST) instead of sampling [7].
The rest of the procedure remains unchanged from 2.2.1.

2.2.3 A closed-form approximation

Interestingly, a fairly accurate closed-from approximation is also possible by using the Gaussian
cummulative distribution function �(x) = 1p

2⇡

R
x

�1 e�t

2
/2dt to approximate the logistic function.

It can be shown by parameter differentiation with respect to s and then integrating with respect to s
that Z 1

�1
�(�x)N (x|µ, s)dx = �

✓
µp

��2

+ s2

◆
(8)

Substituting in �(x) ⇡ �(

p
⇡/8x), we get

Z 1

�1
�(x)N (x|µ, s2)dx ⇡ �

µp

1 + ⇡s2/8

!
(9)

This is an approximation that is used for Bayesian prediction when the posterior is approximated by
a Gaussian [8]. As we now have a closed-form approximation of ↵, one can also obtain expressions
for � and � by differentiating.

Furthermore, we can even approximate the objective function (7) in a closed-form that is easily
differentiable:

E
Y⇠N (µ,s

2
)

[log(�(Y))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (10)

⇡
p

1 + ⇡s2/8 log �
⇣ µp

1 + ⇡s2/8

⌘
(11)

The actual objective as defined in (3) can be obtained from the above by observing that 1� �(x) =
�(�x). The gradient, or Hessian with respect to w can be found by analytically differentiating.

3 Fast dropout for neural networks

Dropout training, as originally proposed, was intended for neural networks where hidden units are
dropped out, instead of the data. Fast dropout is directly applicable to dropping out the final hidden
layer of neural networks. In this section, we approximately extend our technique to deep neural
networks and show how to do it for several popular types of hidden units and output units.

3.1 The hidden layers

Under dropout training, each hidden unit takes a random variable as input, and produces a random
variable as output. Because of the CLT, we may approximate the inputs as Gaussians and character-
ize the outputs by their means and variances. An additional complication is that the inputs to hidden
units have a covariance, which is close to diagonal in practice as shown in figure 1.

Consider any hidden unit in dropout training, we may approximate its input as a Gaussian variable
X ⇠ N (x|µ, s2), which leads to its output mean and variance ⌫, ⌧2. For the commonly used
sigmoid unit

⌫ =

Z 1

�1
�(x)N (x|µ, s2)dx ⇡ �

µp

1 + ⇡s2/8

!
(12)

4
This integral can be evaluated exactly for the rectified linear unit f(x) = max(0, x). Let r = µ/s,
then

⌫ =

Z 1

�1
f(x)N (x|µ, s2)dx = �(r)µ+ sN (r|0, 1) (13)

With dropout training, each hidden unit also has an output variance, which can be approximated
fairly well (see A.4).

20 40

10

20

30

40

50
−5

0

5

10

20 40

10

20

30

40

50

0

1

2

3

x 10
−3

−20 −15 −10 −5
0

1000

2000

3000

−0.1 0 0.1 0.2
0

1000

2000

3000

Figure 1: Top: MC dropout covariance matrix of the inputs of 10 random hidden units; Top-left:
trained to convergence; Top-right: at random initialization. The covariance is not completely diago-
nal once trained to convergence. Bottom: empirical input distribution of the input of a hidden unit.
Bottom-left: trained to convergence; Bottom-right: at initialization. We lose almost nothing here.

3.2 Training with backpropagation

The resulting neural network can be trained by backpropagation with an additional set of derivatives.
In normal backpropagation, one only need to keep @L

@µ

i

for each hidden unit i with input µ
i

. For
approximate dropout training, we need @L

@s

2
i

as well for input variance s2
i

. Where µ
i

= p
P

j

w
ij

⌫0
j

and s
i

= p(1� p)
P

j

⌫02
j

w2

ij

+ p⌧ 02
j

w2

ij

and ⌫0
i

, ⌧ 0
i

are the output mean and variance of the previous
layer.

3.3 The output layer

We still need to define what the cost function L is, which is task dependent. We outline how to do
approximate dropout for the final layer for one-vs-rest logistic units, linear units under squared loss,
and softmax units under their representative cost functions.

Logistic units with the cross-entropy loss function that can be well-approximated using the follow-
ing:

E
X⇠N (µ,s

2
)

[log(�(X))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (14)

⇡
p

1 + ⇡s2/8 log �
⇣ µp

1 + ⇡s2/8

⌘
(15)

Linear units with squared error loss can be computed exactly

E
X⇠N (µ,s

2
)

[(X � t)2] =

Z 1

�1
(x� t)2N (x|µ, s2)dx (16)

= s2 + (µ� t)2 (17)

Since s2 =

P
j

↵w2

j

x2

j

, this is L2 regularization.

5

Can now train neural networks
with deterministic dropout!

•  We can now adjust α and add more variance
freely if the one decided by dropout is
suboptimal

Method name Number of errors
NN-1200-1200 plain 182
NN-1200-1200 det. Dropout 134
NN-1200-1200 det. Dropout + Var 109
NN-1200-1200 det. Dropout + Var 110
NN-300 MSE [LeCun 1998] 360
NN-800 [Simard 2003] 160
Real dropout [Hinton 2012] 105-120

79 with pretraining

More classification results

•  Classification on some more datasets

SmallM

USPS Isolet hepatitis soybean

NoDrop 87 94.6 90.5 83 94
F.Dropout 90 96.3 93.2 87 88

Regression

•  The final layer is like L2 penalty:

•  Test error (training error) for X-200-100-y

This integral can be evaluated exactly for the rectified linear unit f(x) = max(0, x). Let r = µ/s,
then

⌫ =

Z 1

�1
f(x)N (x|µ, s2)dx = �(r)µ+ sN (r|0, 1) (13)

With dropout training, each hidden unit also has an output variance, which can be approximated
fairly well (see A.4).

20 40

10

20

30

40

50
−5

0

5

10

20 40

10

20

30

40

50

0

1

2

3

x 10
−3

−20 −15 −10 −5
0

1000

2000

3000

−0.1 0 0.1 0.2
0

1000

2000

3000

Figure 1: Top: MC dropout covariance matrix of the inputs of 10 random hidden units; Top-left:
trained to convergence; Top-right: at random initialization. The covariance is not completely diago-
nal once trained to convergence. Bottom: empirical input distribution of the input of a hidden unit.
Bottom-left: trained to convergence; Bottom-right: at initialization. We lose almost nothing here.

3.2 Training with backpropagation

The resulting neural network can be trained by backpropagation with an additional set of derivatives.
In normal backpropagation, one only need to keep @L

@µ

i

for each hidden unit i with input µ
i

. For
approximate dropout training, we need @L

@s

2
i

as well for input variance s2
i

. Where µ
i

= p
P

j

w
ij

⌫0
j

and s
i

= p(1� p)
P

j

⌫02
j

w2

ij

+ p⌧ 02
j

w2

ij

and ⌫0
i

, ⌧ 0
i

are the output mean and variance of the previous
layer.

3.3 The output layer

We still need to define what the cost function L is, which is task dependent. We outline how to do
approximate dropout for the final layer for one-vs-rest logistic units, linear units under squared loss,
and softmax units under their representative cost functions.

Logistic units with the cross-entropy loss function that can be well-approximated using the follow-
ing:

E
X⇠N (µ,s

2
)

[log(�(X))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (14)

⇡
p

1 + ⇡s2/8 log �
⇣ µp

1 + ⇡s2/8

⌘
(15)

Linear units with squared error loss can be computed exactly

E
X⇠N (µ,s

2
)

[(X � t)2] =

Z 1

�1
(x� t)2N (x|µ, s2)dx (16)

= s2 + (µ� t)2 (17)

Since s2 =

P
j

↵w2

j

x2

j

, this is L2 regularization.

5

This integral can be evaluated exactly for the rectified linear unit f(x) = max(0, x). Let r = µ/s,
then

⌫ =

Z 1

�1
f(x)N (x|µ, s2)dx = �(r)µ+ sN (r|0, 1) (13)

With dropout training, each hidden unit also has an output variance, which can be approximated
fairly well (see A.4).

20 40

10

20

30

40

50
−5

0

5

10

20 40

10

20

30

40

50

0

1

2

3

x 10
−3

−20 −15 −10 −5
0

1000

2000

3000

−0.1 0 0.1 0.2
0

1000

2000

3000

Figure 1: Top: MC dropout covariance matrix of the inputs of 10 random hidden units; Top-left:
trained to convergence; Top-right: at random initialization. The covariance is not completely diago-
nal once trained to convergence. Bottom: empirical input distribution of the input of a hidden unit.
Bottom-left: trained to convergence; Bottom-right: at initialization. We lose almost nothing here.

3.2 Training with backpropagation

The resulting neural network can be trained by backpropagation with an additional set of derivatives.
In normal backpropagation, one only need to keep @L

@µ

i

for each hidden unit i with input µ
i

. For
approximate dropout training, we need @L

@s

2
i

as well for input variance s2
i

. Where µ
i

= p
P

j

w
ij

⌫0
j

and s
i

= p(1� p)
P

j

⌫02
j

w2

ij

+ p⌧ 02
j

w2

ij

and ⌫0
i

, ⌧ 0
i

are the output mean and variance of the previous
layer.

3.3 The output layer

We still need to define what the cost function L is, which is task dependent. We outline how to do
approximate dropout for the final layer for one-vs-rest logistic units, linear units under squared loss,
and softmax units under their representative cost functions.

Logistic units with the cross-entropy loss function that can be well-approximated using the follow-
ing:

E
X⇠N (µ,s

2
)

[log(�(X))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (14)

⇡
p

1 + ⇡s2/8 log �
⇣ µp

1 + ⇡s2/8

⌘
(15)

Linear units with squared error loss can be computed exactly

E
X⇠N (µ,s

2
)

[(X � t)2] =

Z 1

�1
(x� t)2N (x|µ, s2)dx (16)

= s2 + (µ� t)2 (17)

Since s2 =

P
j

↵w2

j

x2

j

, this is L2 regularization.

5

Sq.Error liver cardio housing CPU
NoDrop 16 (3.1) 4320(90) 39 (29) 1.5 (1.2)

F.Dropout 10 (9.5) 298(217) 35 (32) 1.3 (1.4)

Conclusions

•  Dropout training seems promising

•  But doing real dropout is slow, sampling is
expensive

•  Apply the Gaussian approximation

•  Cheaper samples or completely deterministic
approximations!

The output variance of hidden units

•  Wanted an overestimate. Not exact, but fairly
accurate

−5 0 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

mu

E
xp

e
ct

a
tio

n

s=1,3,5
s=1,3,5 approx

Substituting in �(x) ⇡ �(

p
⇡/8x), we get

Z 1

�1
�(x)N (x|µ, s2)dx ⇡ �

µp

1 + ⇡s2/8

!
(8)

This is an approximation that is used for Bayesian prediction when the posterior is approximated
by a Gaussian [mackay]. As we now have a closed-form approximation of ↵, one can also obtain
expressions for � and � by differentiating.

Furthermore, we can even approximate the objective function (3) in a closed-form that is easily
differentiable. The key expression is

E
Y⇠N (µ,s

2
)

[log(�(Y))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (9)

⇡ 1p
1 + ⇡s2/8

log �
⇣ µp

1 + ⇡s2/8

⌘
(10)

The actual objective as defined in (3) can be obtained from the above by observing that 1� �(x) =
sigma(�x). The gradient, or Hessian with respect to w can be found by analytically differentiating.

Finally, we can approximate the output variance
Var

Y⇠N (µ,s

2
)

[�(Y)] = E[�(Y)

2

]� E[�(y)]2 (11)

⇡ E[�(a(Y � b))]� E[�(y)]2 (12)

⇡ �

a(µ� b)p
1 + ⇡/8a2s2

!
� �

µp

1 + ⇡/8s2

!
2

(13)

by matching the values and derivatives at where �(x)2 = 1/2, reasonable values are a = 4 � 2

p
2

and b = � log(

p
2� 1).

3 Experiments

10
0

10
1

10
2

10
3

10
4

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

seconds spent in training

e
rr

o
r

ra
te

 in
 t
h
e
 v

a
lid

a
tio

n
 s

e
t

10
0

10
1

10
2

10
3

10
4

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

training iterations

e
rr

o
r

ra
te

 in
 t
h
e
 v

a
lid

a
tio

n
 s

e
t

Plain LR
Gaussian approx.
MC dropout

Figure 1: Validation errors vs. time spent in training (left), and number of iterations (right). trained
using batch gradient descent with Wolfe line search on the 20-newsgroup subtask alt.atheism vs.
religion.misc. 100 samples are used. For MC dropout, z

i

is sampled only for non-zero x
i

, with a
dropout rate of 0.5.

The accuracy and time taken are listed in table 1 for the datasets described in section A.1. The Gaus-
sian approximation is generally around 10 times faster than MC dropout and performs comparably
to NBSVM in [3]. Further speedup is possible by using one of the deterministic approximations
instead of sampling. While each iteration of the Gaussian approximation is still slower than LR, it
sometimes reaches a better validation performance in less time.

4

Substituting in �(x) ⇡ �(

p
⇡/8x), we get

Z 1

�1
�(x)N (x|µ, s2)dx ⇡ �

µp

1 + ⇡s2/8

!
(8)

This is an approximation that is used for Bayesian prediction when the posterior is approximated
by a Gaussian [mackay]. As we now have a closed-form approximation of ↵, one can also obtain
expressions for � and � by differentiating.

Furthermore, we can even approximate the objective function (3) in a closed-form that is easily
differentiable. The key expression is

E
Y⇠N (µ,s

2
)

[log(�(Y))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (9)

⇡ 1p
1 + ⇡s2/8

log �
⇣ µp

1 + ⇡s2/8

⌘
(10)

The actual objective as defined in (3) can be obtained from the above by observing that 1� �(x) =
sigma(�x). The gradient, or Hessian with respect to w can be found by analytically differentiating.

Finally, we can approximate the output variance
Var

Y⇠N (µ,s

2
)

[�(Y)] = E[�(Y)

2

]� E[�(Y)]

2 (11)

⇡ E[�(a(Y � b))]� E[�(Y)]

2 (12)

⇡ �

a(µ� b)p
1 + ⇡/8a2s2

!
� �

µp

1 + ⇡/8s2

!
2

(13)

by matching the values and derivatives at where �(x)2 = 1/2, reasonable values are a = 4 � 2

p
2

and b = � log(

p
2� 1).

3 Relation to Bayesian model selection

L(µ) = E
z;z

i

⇠Bernoulli(p

i

)

[log p(y|µTD
z

x)] (14)
⇡ E

Y⇠N (E[µ

T

D

z

x],Var[µ

T

D

z

x])

[log(y|Y)] (15)

= E
w:w

i

⇠N (µ

i

,↵µ

2
i

)

[log p(y|wTx)] (16)

 logE
w:w

i

⇠N (µ

i

,↵µ

2
i

)

[p(y|wTx)] (17)

= log(M
µ

) (18)

M
µ

=

R
p(D|w)p(w|µ)dw is the Bayesian evidence. p(w

i

|µ
i

) = N (w
i

|µ
i

,↵µ2

i

)

and

p(y|x,w) = �(ywTx)

4 Experiments

The accuracy and time taken are listed in table 1 for the datasets described in section A.1. The Gaus-
sian approximation is generally around 10 times faster than MC dropout and performs comparably
to NBSVM in [3]. Further speedup is possible by using one of the deterministic approximations
instead of sampling. While each iteration of the Gaussian approximation is still slower than LR, it
sometimes reaches a better validation performance in less time.

5 Conclusions

Dropout training, as originally proposed, was intended for neural networks where hidden units are
dropped out, instead of the data. Fast dropout is directly applicable to dropping out the final hidden

4

Covariance matrices

This integral can be evaluated exactly for the rectified linear unit f(x) = max(0, x). Let r = µ/s,
then

⌫ =

Z 1

�1
f(x)N (x|µ, s2)dx = �(r)µ+ sN (r|0, 1) (13)

With dropout training, each hidden unit also has an output variance, which can be approximated
fairly well (see A.4).

20 40

10

20

30

40

50
−5

0

5

10

20 40

10

20

30

40

50

0

1

2

3

x 10
−3

−20 −15 −10 −5
0

1000

2000

3000

−0.1 0 0.1 0.2
0

1000

2000

3000

Figure 1: Top: MC dropout covariance matrix of the inputs of 10 random hidden units; Top-left:
trained to convergence; Top-right: at random initialization. The covariance is not completely diago-
nal once trained to convergence. Bottom: empirical input distribution of the input of a hidden unit.
Bottom-left: trained to convergence; Bottom-right: at initialization. We lose almost nothing here.

3.2 Training with backpropagation

The resulting neural network can be trained by backpropagation with an additional set of derivatives.
In normal backpropagation, one only need to keep @L

@µ

i

for each hidden unit i with input µ
i

. For
approximate dropout training, we need @L

@s

2
i

as well for input variance s2
i

. Where µ
i

= p
P

j

w
ij

⌫0
j

and s
i

= p(1� p)
P

j

⌫02
j

w2

ij

+ p⌧ 02
j

w2

ij

and ⌫0
i

, ⌧ 0
i

are the output mean and variance of the previous
layer.

3.3 The output layer

We still need to define what the cost function L is, which is task dependent. We outline how to do
approximate dropout for the final layer for one-vs-rest logistic units, linear units under squared loss,
and softmax units under their representative cost functions.

Logistic units with the cross-entropy loss function that can be well-approximated using the follow-
ing:

E
X⇠N (µ,s

2
)

[log(�(X))] =

Z 1

�1
log(�(x))N (x|µ, s2)dx (14)

⇡
p

1 + ⇡s2/8 log �
⇣ µp

1 + ⇡s2/8

⌘
(15)

Linear units with squared error loss can be computed exactly

E
X⇠N (µ,s

2
)

[(X � t)2] =

Z 1

�1
(x� t)2N (x|µ, s2)dx (16)

= s2 + (µ� t)2 (17)

Since s2 =

P
j

↵w2

j

x2

j

, this is L2 regularization.

5

Left: covariance of the inputs to hidden units after
training converges. Right: in the beginning

Testing the assumptions

0 10 20 30 40
0

50

100

150

200

250

300

350

400

450

500

Iterations

L

0 10 20 30
0

50

100

150

200

250

300

350

400

450

500

Iterations

L

Dropout
Naive
Gauss

Dropout
Naive
Gauss

•  The training objective functions
•  Left: training on expected cross entropy (dropout)
•  Right: training on cross entropy (plain LR)

C
ro

ss
 e

nt
ro

py

C
ro

ss
 e

nt
ro

py

Dropout
Plain
Gauss

Dropout
Plain
Gauss

