Fast and Adaptive Online Training of Feature-Rich Translation Models

Spence Green Sida Wang

Daniel Cer Christopher D. Manning

Stanford University

ACL 2013

Feature-Rich Research Liang et al. 2006 Tillmann and Zhang 2006 Arun and Koehn 2007 Ittycheriah and Roukos 2007 Watanabe et al. 2007 Chiang et al. 2008; Chiang et al. 2009 Haddow et al 2011 Hopkins and May 2011 Xiang and Ittycheriah 2011 Cherry and Foster 2012 Chiang 2012 Gimpel 2012 Simianer et al 2012 Watanabe 2012

Industry/Evaluations

n-best/lattice MERT

MIRA (ISI)

Feature-Rich Research Liang et al. 2006 Tillmann and Zhang 2006 Arun and Koehn 2007 Ittycheriah and Roukos 2007 Watanabe et al. 2007 Chiang et al. 2008; Chiang et al. 2009 Haddow et al 2011 Hopkins and May 2011 Xiang and Ittycheriah 2011 Cherry and Foster 2012 Chiang 2012 Gimpel 2012 Simianer et al. 2012 Watanabe 2012

Industry/Evaluations

n-best/lattice MERT

MIRA (ISI)

Feature-rich Shared Task Submissions

Feature-rich

2012	WMT	0	
	IWSLT	1	
2013	WMT	2 ?	
	IWSLT	TBD	

Speculation: Entrenchment Of MERT

Feature-rich on small tuning sets?

Implementation complexity

Open source availability

Speculation: Entrenchment Of MERT

Feature-rich on small tuning sets?

Implementation complexity

Open source availability

Top-selling phone of 2003

Motivation: Why Feature-Rich MT?

Make MT more like other machine learning settings

Features for specific errors

Domain adaptation

Motivation: Why Online MT Tuning?

Search: decode more often

Better solutions See: [Liang and Klein 2009]

Computer-aided translation: incremental updating

Benefits Of Our Method

Fast and scalable

Adapts to dense/sparse feature mix

Not complicated

Online Algorithm Overview

Updating with an adaptive learning rate

Automatic feature selection via L_1 regularization

Loss function: Pairwise ranking

t time/update step

t	time/update step
Wt	weight vector in \mathbb{R}^n

t	time/update step
Wt	weight vector in \mathbb{R}^n
η	learning rate

t	time/update step
Wt	weight vector in \mathbb{R}^n
η	learning rate
$\ell_t(w)$	loss of <i>t</i> 'th example

t	time/update step
Wt	weight vector in \mathbb{R}^n
η	learning rate
$\ell_t(w)$	loss of <i>t</i> 'th example
$z_{t-1} \in \partial \ell_t(w_{t-1})$	subgradient set (<i>subdifferential</i>)

t	time/update step
Wt	weight vector in \mathbb{R}^n
η	learning rate
$\ell_t(w)$	loss of t 'th example
$z_{t-1} \in \partial \ell_t(w_{t-1})$	subgradient set (<i>subdifferential</i>)
$z_{t-1} = \nabla \ell_t(w_{t-1})$	for differentiable loss functions

t	time/update step
Wt	weight vector in \mathbb{R}^n
η	learning rate
$\ell_t(w)$	loss of t 'th example
$z_{t-1} \in \partial \ell_t(w_{t-1})$	subgradient set (subdifferential)
$z_{t-1} = \nabla \ell_t(w_{t-1})$	for differentiable loss functions
r(w)	regularization function

Per-instance update:

$$w_t = w_{t-1} - \eta z_{t-1}$$

Per-instance update:

$$w_t = w_{t-1} - \eta z_{t-1}$$

Issue #1: learning rate schedule

 η/t ?

Per-instance update:

$$w_t = w_{t-1} - \eta z_{t-1}$$

Issue #1: learning rate schedule η / t ? η / \sqrt{t} ?

Per-instance update:

$$w_t = w_{t-1} - \eta z_{t-1}$$

Issue #1: learning rate schedule

$$\eta / t$$
?
 η / \sqrt{t} ?
 $\eta / (1 + \gamma t)$? Yuck.

SGD update:

$$w_t = w_{t-1} - \eta z_{t-1}$$

Issue #2: same step size for every coordinate

SGD update:

$$w_t = w_{t-1} - \eta z_{t-1}$$

Issue #2: same step size for every coordinate

Intuitively, we might want:

Frequent feature: small steps e.g. η / t Rare feature: large steps e.g. η / \sqrt{t}

SGD: Learning Rate Adaptation

SGD update:

$$w_t = w_{t-1} - \eta z_{t-1}$$

Scale learning rate with $A^{-1} \in \mathbb{R}^{n \times n}$:

$$w_t = w_{t-1} - \eta A^{-1} z_{t-1}$$

SGD: Learning Rate Adaptation

SGD update:

$$w_t = w_{t-1} - \eta z_{t-1}$$

Scale learning rate with $A^{-1} \in \mathbb{R}^{n \times n}$:

$$w_t = w_{t-1} - \eta A^{-1} z_{t-1}$$

Choices:

 $A^{-1} = I \qquad (SGD)$

SGD: Learning Rate Adaptation

SGD update:

$$w_t = w_{t-1} - \eta z_{t-1}$$

Scale learning rate with $A^{-1} \in \mathbb{R}^{n \times n}$:

$$w_t = w_{t-1} - \eta A^{-1} z_{t-1}$$

Choices:

 $A^{-1} = I$ (SGD) $A^{-1} = H^{-1}$ (Batch: Newton step)

AdaGrad

Duchi et al. 2011

Update:

$$w_t = w_{t-1} - \eta A^{-1} z_{t-1}$$

Set
$$A^{-1} = G_t^{-1/2}$$
:
 $G_t = G_{t-1} + z_{t-1} \cdot z_{t-1}^{\mathsf{T}}$

AdaGrad: Approximations and Intuition

For high-dimensional W_t , use diagonal G_t

$$w_t = w_{t-1} - \eta G_t^{-1/2} z_{t-1}$$

AdaGrad: Approximations and Intuition

For high-dimensional w_t , use diagonal G_t

$$w_t = w_{t-1} - \eta G_t^{-1/2} z_{t-1}$$

Intuition:

 $1/\sqrt{t}$ schedule on constant gradient Small steps for frequent features Big steps for rare features

[Duchi et al. 2011]

AdaGrad vs. SGD: 2D Illustration

Feature Selection

Traditional approach: frequency cutoffs

Unattractive for large tuning sets (e.g. bitext)

Feature Selection

Traditional approach: frequency cutoffs

Unattractive for large tuning sets (e.g. bitext)

More principled: L_1 regularization

$$r(w) = \sum_{i} |w_i|$$

Two-step update:

$$w_{t-\frac{1}{2}} = w_{t-1} - \eta z_{t-1} \tag{1}$$

$$w_{t} = \arg\min_{w} \left(\underbrace{\frac{1}{2} \left\| w - w_{t-\frac{1}{2}} \right\|^{2}}_{\text{proximal term}} + \underbrace{\frac{\lambda \cdot r(w)}{\text{regularization}}}_{\text{regularization}} \right)$$
(2)

[Duchi and Singer 2009]

Two-step update:

$$w_{t-\frac{1}{2}} = w_{t-1} - \eta z_{t-1} \tag{1}$$

$$w_{t} = \arg\min_{w} \left(\underbrace{\frac{1}{2} \left\| w - w_{t-\frac{1}{2}} \right\|^{2}}_{\text{proximal term}} + \underbrace{\frac{\lambda \cdot r(w)}{\text{regularization}}}_{\text{regularization}} \right)$$
(2)

[Duchi and Singer 2009]

Extension: AdaGrad update in step (1)

For *L*₁, FOBOS becomes soft thresholding:

$$w_t = \operatorname{sign}(w_{t-\frac{1}{2}}) \left[\left| w_{t-\frac{1}{2}} \right| - \lambda \right]_+$$

For *L*₁, FOBOS becomes soft thresholding:

$$w_t = \operatorname{sign}(w_{t-\frac{1}{2}}) \left[\left| w_{t-\frac{1}{2}} \right| - \lambda \right]_+$$

Squared- L_2 also has a simple form
Feature Selection: Lazy Regularization

Lazy updating: only update active coordinates

Big speedup in MT setting

Feature Selection: Lazy Regularization

Lazy updating: only update active coordinates

Big speedup in MT setting

Easy with FOBOS:

$$t'_j$$
: last update of dimension j
Use $\lambda(t - t'_j)$

1. Additive update: G_t

1. Additive update: G_t

2. Additive update:
$$W_{t-\frac{1}{2}}$$

- **1**. Additive update: G_t
- 2. Additive update: $W_{t-\frac{1}{2}}$
- **3**. Closed-form regularization: W_t

- **1**. Additive update: G_t
- 2. Additive update: $W_{t-\frac{1}{2}}$
- **3**. Closed-form regularization: W_t

- **1**. Additive update: G_t
- 2. Additive update: $W_{t-\frac{1}{2}}$
- 3. Closed-form regularization: w_t

Not complicated Very fast

Recap: Pairwise Ranking

For derivation d, feature map $\phi(d)$, references $e^{1:k}$

Metric: $B(d, e^{1:k})$ (e.g. BLEU+1)

Model score: $M(d) = w \cdot \phi(d)$

Recap: Pairwise Ranking

For derivation d, feature map $\phi(d)$, references $e^{1:k}$

Metric: $B(d, e^{1:k})$ (e.g. BLEU+1) Model score: $M(d) = w \cdot \phi(d)$

Pairwise consistency:

$$M(d_+) > M(d_-) \iff B\left(d_+, e^{1:k}\right) > B\left(d_-, e^{1:k}\right)$$

[Hopkins and May 2011]

Loss Function: Pairwise Ranking

$M(d_+) > M(d_-) \iff w \cdot (\phi(d_+) - \phi(d_-)) > 0$

Loss Function: Pairwise Ranking

 $M(d_+) > M(d_-) \iff w \cdot (\phi(d_+) - \phi(d_-)) > 0$

Loss formulation:

Difference vector: $v = \phi(d_+) - \phi(d_-)$

Find *w* so that $w \cdot v > 0$

Binary classification problem between ν and $-\nu$

Loss Function: Pairwise Ranking

 $M(d_+) > M(d_-) \iff w \cdot (\phi(d_+) - \phi(d_-)) > 0$

Loss formulation:

Difference vector: $v = \phi(d_+) - \phi(d_-)$

Find *w* so that $w \cdot v > 0$

Binary classification problem between ν and $-\nu$

Logistic loss: convex, differentiable

[Hopkins and May 2011]

Parallelization

Online algorithms are inherently sequential

Parallelization

Online algorithms are inherently sequential

Out-of-order updating:

$$w_7 = w_6 - \eta z_4$$
$$w_8 = w_7 - \eta z_6$$
$$w_9 = w_8 - \eta z_5$$

Parallelization

Online algorithms are inherently sequential

Out-of-order updating:

$$w_7 = w_6 - \eta z_4$$
$$w_8 = w_7 - \eta z_6$$
$$w_9 = w_8 - \eta z_5$$

Low-latency regret bound: $O(\sqrt{T})$ [Langford et al. 2009]

Translation Quality Experiments

Arabic-English (Ar-En) and Chinese-English (Zh-En)

Newswire and mixed-genre experiments

BOLT bitexts: data up to 2012

	Bilingual		Monolingual
	Sentences	Tokens	Tokens
Ar–En	6.6M	375M	990M
Zh–En	9.3M	538M	55011

MT System

Phrase-based MT: Phrasal [Cer et al. 2010]

Dense baseline: MERT Cer et al. 2008 line search Accumulates *n*-best lists Random starting points, etc.

Feature-Rich Baseline: PRO

Pairwise Ranking Optimization (PRO)

Batch log loss minimization

Phrasal implementation:

L-BFGS with L_2 regularization

[Hopkins and May 2011]

Feature-Rich Baseline: PRO

Pairwise Ranking Optimization (PRO)

Batch log loss minimization

Phrasal implementation:

L-BFGS with L_2 regularization

[Hopkins and May 2011]

Sanity check: Moses PRO and kb-MIRA (batch) implementations

Dense Features

8 Hierarchical lex. reordering

Dense Features

- 8 Hierarchical lex. reordering
- 5 Moses phrase table features
- 1 Rule bitext count
- 1 Unique rule indicator

Dense Features

- 8 Hierarchical lex. reordering
- 5 Moses phrase table features
- 1 Rule bitext count
- 1 Unique rule indicator
- 1 Word penalty
- 1 Linear distortion
- 1 LM
- 1 Unknown word

Sparse Feature Templates

Discriminative Phrase Table (PT)

Rule indicator:

$$\mathbb{I}\left(\mathsf{space program}\right)$$
 برنامج الفضاء)

Sparse Feature Templates

Discriminative Phrase Table (PT)

Rule indicator:

الفضاء)
$$\Rightarrow$$
 space program

Discriminative Alignments (AL)

Source word deletion:

Word alignments:

(⇒الفضاء) 1 ⇒ space (الفضاء) 1

Sparse Feature Templates

Discriminative Phrase Table (PT)

Rule indicator:

الفضاء)
$$\Rightarrow$$
 space program

Discriminative Alignments (AL)

Source word deletion:

Word alignments:

 $\left(\Leftarrow \| \mathsf{lie diag} \right)$ $\left(\Rightarrow \mathsf{space} \right)$

Discriminative Lex. Reordering (LO)

Phrase orientation:

 $\mathbb{1}\left(\mathsf{swap}(\mathsf{swap})\right)$

Evaluation: NIST OpenMT

Small tuning set: MT06

"Large" tuning set: MT0568 (~4200 segments)

BLEU-4 uncased, Four references

Evaluation: NIST OpenMT

Small tuning set: MT06

"Large" tuning set: MT0568 (~4200 segments)

BLEU-4 uncased, Four references

Paper: mixed genre (bitext) experiments

Results: Small Tuning Set (Dense)

	Ar–En		Zh–En		
	Tune	Test Avg.	Tune	Test Avg.	
MERT	45.08	50.51	33.73	34.49	
This paper	43.16	50.11	32.20	35.25	

Results: Add More Features

	Ar–En		Zh–En		
	Tune	Test Avg.	Tune	Test Avg.	
MERT—Dense	45.08	50.51	33.73	34.49	
This paper +PT	50.61	50.52	34.92	35.12	

Results: Add More Features

	Ar–En		Z	'h–En
	Tune	Test Avg.	Tune	Test Avg.
MERT—Dense	45.08	50.51	33.73	34.49
This paper +PT	50.61	50.52	34.92	35.12
This paper +All	60.85	50.97	39.43	35.31

(MT06 tuning set)

	Ar–En	Zh–En
	Test Avg.	Test Avg.
MERT—mt06	50.51	34.49
MERT—mt0568	50.74	34.55

	Ar–En	Zh–En
	Test Avg.	Test Avg.
MERT—mt06	50.51	34.49
MERT—mt0568	50.74	34.55
This paper		
+All—mt06	50.97	35.31

	Ar–En		Zh–En	
	Test Avg.		Test Avg.	
MERT—mt06	50.51		34.49	
MERT—mt0568	50.74		34.55	
This paper				
+All—mt06	50.97		35.31	
+All—mt0568	52.34	+1.60	36.61	+2.06

	Ar–En		Zh–En	
	Test Avg.		Test Avg.	
MERT—mt06	50.51		34.49	
MERT—mt0568	50.74		34.55	
This paper				
+All—mt06	50.97		35.31	
+All—mt0568	52.34	+1.60	36.61	+2.06

PRO+All worse than MERT-mt0568

Analysis: Zh-En MT06 Tuning

(16 threads)		Epochs	Min/epoch
MERT	Dense	22	180

Analysis: Zh-En MT06 Tuning

(16 threads)		Epochs	Min/epoch
MERT	Dense	22	180
PRO	+PT	25	35
kb-MIRA*	+PT	26	25
This paper	+PT	10	10
Analysis: Zh-En MT06 Tuning

(16 threads)		Epochs	Min/epoch
MERT	Dense	22	180
PRO	+PT	25	35
kb-MIRA [*]	+PT	26	25
This paper	+PT	10	10
PRO	+All	13	100
This paper	+All	5	15

Analysis: Zh-En MT06 Tuning

(16 threads)		Epochs	Min/epoch
MERT	Dense	22	180
PRO	+PT	25	35
kb-MIRA*	+PT	26	25
This paper	+PT	10	10
PRO	+All	13	100
This paper	+All	5	15

MERT—mt0568 tuning takes about 5 days

Analysis: Runtime

Online regret bounds depend on # updates Large datasets: more updates per epoch Fewer epochs to converge

Analysis: Runtime

Online regret bounds depend on # updates Large datasets: more updates per epoch Fewer epochs to converge

Lazy updating helps:

 $w_t \approx 100k$ features $z_{t-1} \approx 500$ features

Arabic matrix clauses often verb-initial

Arabic matrix clauses often verb-initial

Manually selected 208 verb-initial segments (MT09)

Arabic matrix clauses often verb-initial

Manually selected 208 verb-initial segments (MT09)

32 differed for MERT–Dense vs. +All

	32	
Both wrong	10	31.3%
MERT-Dense correct	4	12.5%
+All correct	18	56.3%

	32	
Both wrong	10	31.3%
MERT-Dense correct	4	12.5%
+All correct	18	56.3%

ref: the newspaper and television reported

- MERT she said the newspaper and television
- +All television and newspaper said

Analysis: Domain Adaptation

برنامج \Rightarrow program, programme

Analysis: Domain Adaptation

برنامج
$$\Rightarrow$$
 program, programme

bitext-5k # MT0568

programme	185	0
program	19	449

Analysis: Domain Adaptation

bitext–5k # MT0568

programme	185	0
program	19	449
+PT rules: programme	353	79
+PT rules: program	9	31

Caveats and Next Steps

Single-reference setting

BLEU+1 is unreliable

Lexicalized features cause overfitting

Caveats and Next Steps

Single-reference setting

BLEU+1 is unreliable

Lexicalized features cause overfitting

Current work

Bitext tuning

Different loss function

Conclusion

Fast, adaptive, online tuning for MT

Fast, adaptive, online tuning for MT

Easy to implement

Fast, adaptive, online tuning for MT

Easy to implement

Works as well as MERT for Dense

Fast, adaptive, online tuning for MT

Easy to implement

Works as well as MERT for Dense

Sane feature engineering

Fast and Adaptive Online Training of Feature-Rich Translation Models

Spence Green Sida Wang

Daniel Cer Christopher D. Manning

Stanford University

Try the code in Phrasal:

nlp.stanford.edu/software/phrasal/

En–De Learning Curve

Sparse Features: Negative Results

Discriminative LM	Jane called Sally
Phrase boundary features	Jane called Sally
Alignment constellation	1-0 0-1
Target word insertion	Jane called the Sally