Relaxations for inference in restricted Boltzmann
machines

Sida Wang*  Roy Frostig*  Percy Liang  Christoper D. Manning
{sidaw, rf}@cs.stanford.edu

ICLR 2014

April 15, 2014

Wang & Frostig (Stanford) Randomized relax-and-round April 15, 2014 1/27



© Background
@ The problem
@ Integer quadratic program

© Randomized Relax and Round
@ Relaxations
@ Randomized rounding

© Evaluations

@ Conclusions

Wang & Frostig (Stanford) Randomized relax-and-round April 15, 2014 2/27



Outline

@ Background

Wang & Frostig (Stanford) Randomized relax-and-round April 15, 2014 3/27



ICLR context

Probablistic models seems to be losing to feedforward networks.

Probablistic models / max-margin models requiring inference are still
necessary/better at tasks having structured outputs:

o Word alignment
o CRFs for image segmentation, sequence tagging
@ Parsing

or if you want to make use of unlabelled data.
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U2 prietilen
Inference methods
Partly because we cannot do inference as well as we can do gradient
descend
e MCMC (Gibbs)
@ Variational inference (mean field)
o Belief propagation (not used in RBMs)
@ Relaxation (not used in RBMs)

We propose a new relaxation-based inference method and solve it using
gradient descend. Applicable to RBMs, DBMs, MRFs, CRFs.
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Background The problem

Theoretical properties

Inference Method | Terminate | Correct
MCMC No Yes
practical MCMC Yes No
variational inference Yes No
belief prop. No No
relaxation Yes Approx.

Terminate: guaranteed convergence to an answer (say in polytime)
Correct: guaranteed to return the right answer
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Theoretical properties

Inference Method | Terminate | Correct
MCMC No Yes
practical MCMC Yes No
variational inference Yes No
belief prop. No No
relaxation Yes Approx.

Terminate: guaranteed convergence to an answer (say in polytime)
Correct: guaranteed to return the right answer

Approx.: within some multiplicative/additive constant of the right answer
Cannot have 2 yes because Long and Servedio, 2010 showed it's NP hard
to do inference even in RBMs, even approximately.
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Tl atian
How to make practical use of a hardness result

To show problem A is hard:
@ Find a similar problem B known to be hard

@ Make enough assumptions on A so that B reduces to A
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Background The problem

How to make practical use of a hardness result

To show problem A is hard:
@ Find a similar problem B known to be hard

@ Make enough assumptions on A so that B reduces to A

To make use of the hardness proof:

@ Look at the assumptions needed to make A harder than B

@ Decide that B is harder than practical instances of A

@ Try to solve A using the best approximation algorithm for B

B is CUTNORM (Alon and Naor, 2006), which is a special case of
MAXCUT.
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Background The problem

What is this work?
Do RBM inference by the (almost provably) optimal approximation
algorithm for MAXCUT

@ SDP relaxation and randomized rounding from vectors

@ solve a practical low-rank version of the SDP

@ use random roundings to get a variety of near-MAP solutions
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Flash RBM review

The restricted Boltzmann Machine defines a probability distribution on bit

vector v € {0,1}"
o RBM: ]
pw(v) = 7 ; exp(v' Wh+a'v+b'h)

e Energy E(v,h) = —v ' Wh—a'v—0b"h
e Partition function Z =3_ exp(v " Wh+aTv+b"h)
@ Bipartite Markov random field with latent variables

@ Better guarantees here, but we present a more general solution.
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MAP as an IQP

MAP inference in RBM is an instance of the integer quadratic program

maximize z! Az
subjectto z e {-1,1}"

T _
o ' Ax = Zi,j Ajjxix;
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N - .. UCTULJ |nteger quadratic program
MAP as an IQP

MAP inference in RBM is an instance of the integer quadratic program
maximize z! Ax

subjectto z e {-1,1}"

o ' Ax = Zi,j Ajjxix;
@ For the RBM

A:

;[0 W] 2= [0, BT
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MAP as an IQP

MAP inference in RBM is an instance of the integer quadratic program

maximize z! Az
subjectto z e {-1,1}"

o ' Ax = Zi,j Ajjxix;
@ For the RBM

1o W
Azz[WT 0] x=[v,h]"

@ The case x € {0,1}" and any biases can also be reduced to a
different A.
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Outline

© Randomized Relax and Round
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Warm-up: a simple relaxation

MAP inference in RBM is an instance of the integer quadratic program

maximize z! Az
subjectto z e {-1,1}"

Relaxes to
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Introducing the SDP relaxation

MAP inference in RBM is an instance of the integer quadratic program

maximize ! Az = tr(Azz ")
subject to xz € {-1,1}"

Make the objective linear by reparametrizing S = zz "

maximize tr(Azz') = tr(AS)
subject to S € R™*"
S >0, diag(S) =1
rank(S) =1

Dropping the non-convex constraint rank(S) = 1 gives us a semidefinite
program (SDP).
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Randomized Relax and Round Relaxations

SDP as relaxation of IQP
Picture: SDP
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Randomized Relax and Round Relaxations

SDP as relaxation of IQP
Picture: SDP

Rows have Euclidean norm 1
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Rank k relaxation

While the SDP can be solved efficiently in theory, it does not scale very
well in n. Consider the rank k relexation instead:

maximize  tr(AS)

subject to § € R™*"
S =0, diag(S) =1
rank(S) <k

We can reparametrize in the reverse S = XX |
maximize tr(AS) = tr(X T AX)
subject to X € R"*k
for the i-th row: || X;|]2 =1

We lose convexity, but we can efficiently find a local minimum by
projected gradient descend on X.

Wang & Frostig (Stanford) Randomized relax-and-round April 15, 2014 15 / 27



Randomized Relax and Round Relaxations

A picture
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Randomized Relax and Round Relaxations

A picture

Rank 3 relaxation. Rows have Euclidean norm 1.
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FRenelamrees] ieuitiig
X — x rounding scheme

Goemans and Williamson style rounding for MAX-CUT
Given X € R™F we want to get x € {—1,1}™

@ Sample random spherical unit vector g

e Take each x; = sgn((X;, g))
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Outline

© Evaluations
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MAP Inference in RBM

Solving

maximize
subject to z € {-1,1}"

with randomized relax and rounding (rrr)

' Az = tr(Azz ")

rer AG rrr-AG Gu
MNIST | 340.29 377.47 377.39 319.34
Random | 22309 22175 23358 12939
Hard 40037 36236 41016 23347
@ AG: annealed Gibbs
@ Gu: Gurobi IQP solver, given 10x longer time
Randomized relax-and-round April 15, 2014
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RRR can be faster and better than annealed Gibbs
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Figure : A comparison of convergence speeds
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RRR is fast, and performs well

seg dbn
time obj time obj
Gurobi 115.68 | 3.7958 | 301 | 2.1013
A. Gibbs 1.26 | 3.3537 33 | 1.9086
k=1 0.15 | 3.2267 | 3.7 | 1.6950
k=2 0.20 | 3.6830 20 | 2.0188
k=4 0.49 | 3.7653 12 | 2.1119
k=8 0.86 | 3.7643 | 5.0 | 2.1120

Table : Averaged results on PASCAL PIC 2011 instances. Time is measured in
seconds. DBN is a deep belief networks trained on MNIST
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RRR gives us near-MAP samples
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Figure : The negative energy of samples from rrr-MAP compared to Gibbs. top:
RBM on MNIST, bot: random matrix
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Histograms of the rrr-MAP samples vs. k

Random Distance Seg. DBN

k=2

k=4
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Use these samples to estimate the partition function

True AIS  rrr-low rrr-1S
MNIST - 436.37 436.69 438.40
Random-S | 5127.6 5127.5 5095.7 5092.4
Random-L - 9750.5 9547.7 9606.7

Table : Estimates of the RBM log-partition function log Z(A)
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Outline

@ Conclusions
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Current /future works

@ Randomized relax-and-round for learning
o Better theoretical bounds specializing to machine learning problems

o Tighten the relaxation using relaxation hierachies
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Conclusions

@ Proposed the randomized relax-and-round method for MAP inference
in MRFs

@ Evaluated in the RBB. RRR sometimes performs better than annealed
Gibbs, and always give annealed Gibbs a better initialization.

o Generate near-MAP samples
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