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Background The problem

ICLR context

Probablistic models seems to be losing to feedforward networks.

Probablistic models / max-margin models requiring inference are still
necessary/better at tasks having structured outputs:

Word alignment

CRFs for image segmentation, sequence tagging

Parsing

or if you want to make use of unlabelled data.
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Background The problem

Inference methods

Partly because we cannot do inference as well as we can do gradient
descend

MCMC (Gibbs)

Variational inference (mean field)

Belief propagation (not used in RBMs)

Relaxation (not used in RBMs)

We propose a new relaxation-based inference method and solve it using
gradient descend. Applicable to RBMs, DBMs, MRFs, CRFs.
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Background The problem

Theoretical properties

Inference Method Terminate Correct
MCMC No Yes
practical MCMC Yes No
variational inference Yes No
belief prop. No No
relaxation Yes Approx.

Terminate: guaranteed convergence to an answer (say in polytime)
Correct: guaranteed to return the right answer

Approx.: within some multiplicative/additive constant of the right answer
Cannot have 2 yes because Long and Servedio, 2010 showed it’s NP hard
to do inference even in RBMs, even approximately.
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Background The problem

How to make practical use of a hardness result

To show problem A is hard:

Find a similar problem B known to be hard

Make enough assumptions on A so that B reduces to A

To make use of the hardness proof:

Look at the assumptions needed to make A harder than B

Decide that B is harder than practical instances of A

Try to solve A using the best approximation algorithm for B

B is CUTNORM (Alon and Naor, 2006), which is a special case of
MAXCUT.
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Background The problem

What is this work?

Do RBM inference by the (almost provably) optimal approximation
algorithm for MAXCUT

SDP relaxation and randomized rounding from vectors

solve a practical low-rank version of the SDP

use random roundings to get a variety of near-MAP solutions
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Background The problem

Flash RBM review

The restricted Boltzmann Machine defines a probability distribution on bit
vector v ∈ {0, 1}n

RBM:

pW (v) =
1

Z

∑
h

exp(v>Wh+ a>v + b>h)

Energy E(v, h) = −v>Wh− a>v − b>h

Partition function Z =
∑

v,h exp(v
>Wh+ a>v + b>h)

Bipartite Markov random field with latent variables

Better guarantees here, but we present a more general solution.
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Background Integer quadratic program

MAP as an IQP

MAP inference in RBM is an instance of the integer quadratic program

maximize x>Ax
subject to x ∈ {−1, 1}n

x>Ax =
∑

i,j Aijxixj

For the RBM

A =
1

2

[
0 W

W> 0

]
x = [v, h]>

The case x ∈ {0, 1}n and any biases can also be reduced to a
different A.
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Randomized Relax and Round Relaxations

Warm-up: a simple relaxation

MAP inference in RBM is an instance of the integer quadratic program

maximize x>Ax
subject to x ∈ {−1, 1}n

Relaxes to
maximize x>Ax
subject to x ∈ [−1, 1]n
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Randomized Relax and Round Relaxations

Introducing the SDP relaxation

MAP inference in RBM is an instance of the integer quadratic program

maximize x>Ax = tr(Axx>)
subject to x ∈ {−1, 1}n

Make the objective linear by reparametrizing S = xx>

maximize tr(Axx>) = tr(AS)
subject to S ∈ Rn×n

S � 0, diag(S) = 1
rank(S) = 1

Dropping the non-convex constraint rank(S) = 1 gives us a semidefinite
program (SDP).
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Randomized Relax and Round Relaxations

SDP as relaxation of IQP

Picture: SDP
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Randomized Relax and Round Relaxations

SDP as relaxation of IQP

Picture: SDP

Rows have Euclidean norm 1
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Randomized Relax and Round Relaxations

Rank k relaxation

While the SDP can be solved efficiently in theory, it does not scale very
well in n. Consider the rank k relexation instead:

maximize tr(AS)
subject to S ∈ Rn×n

S � 0, diag(S) = 1
rank(S) ≤ k

We can reparametrize in the reverse S = XX>:

maximize tr(AS) = tr(X>AX)
subject to X ∈ Rn×k

for the i-th row: ||Xi||2 = 1

We lose convexity, but we can efficiently find a local minimum by
projected gradient descend on X.
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Randomized Relax and Round Relaxations

A picture
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Randomized Relax and Round Relaxations

A picture

Rank 3 relaxation. Rows have Euclidean norm 1.
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Randomized Relax and Round Randomized rounding

X → x rounding scheme

Goemans and Williamson style rounding for MAX-CUT
Given X ∈ Rn×k, we want to get x ∈ {−1, 1}n:

Sample random spherical unit vector g

Take each xi = sgn(〈Xi, g〉)

1 
-1 

X1 

X3 

X2 

g 

Wang & Frostig (Stanford) Randomized relax-and-round April 15, 2014 17 / 27



Evaluations

Outline

1 Background
The problem
Integer quadratic program

2 Randomized Relax and Round
Relaxations
Randomized rounding

3 Evaluations

4 Conclusions

Wang & Frostig (Stanford) Randomized relax-and-round April 15, 2014 18 / 27



Evaluations

MAP Inference in RBM

Solving
maximize x>Ax = tr(Axx>)
subject to x ∈ {−1, 1}n

with randomized relax and rounding (rrr)

rrr AG rrr-AG Gu

MNIST 340.29 377.47 377.39 319.34
Random 22309 22175 23358 12939
Hard 40037 36236 41016 23347

AG: annealed Gibbs

Gu: Gurobi IQP solver, given 10x longer time
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Evaluations

RRR can be faster and better than annealed Gibbs
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Figure : A comparison of convergence speeds
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Evaluations

RRR is fast, and performs well

seg dbn
time obj time obj

Gurobi 115.68 3.7958 301 2.1013
A. Gibbs 1.26 3.3537 33 1.9086
k = 1 0.15 3.2267 3.7 1.6950
k = 2 0.20 3.6830 20 2.0188
k = 4 0.49 3.7653 12 2.1119
k = 8 0.86 3.7643 5.0 2.1120

Table : Averaged results on PASCAL PIC 2011 instances. Time is measured in
seconds. DBN is a deep belief networks trained on MNIST
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Evaluations

RRR gives us near-MAP samples
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Figure : The negative energy of samples from rrr-MAP compared to Gibbs. top:
RBM on MNIST, bot: random matrix
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Evaluations

Histograms of the rrr-MAP samples vs. k
Evaluations

Histograms of the rrr-MAP samples vs. k
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Figure : From top to bottom, rows vary across k = 2, 4, 8. From left to right,
columns show: (1) random A; (2) a pairwise distance matrix formed by MNIST
digits 4 and 9; (3) an instance from seg; (4) an instance from dbn. The limits of
the x-axis is identical in each column.
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Evaluations

Use these samples to estimate the partition function

True AIS rrr-low rrr-IS

MNIST - 436.37 436.69 438.40
Random-S 5127.6 5127.5 5095.7 5092.4
Random-L - 9750.5 9547.7 9606.7

Table : Estimates of the RBM log-partition function logZ(A)
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Conclusions

Current/future works

Randomized relax-and-round for learning

Better theoretical bounds specializing to machine learning problems

Tighten the relaxation using relaxation hierachies
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Conclusions

Conclusions

Proposed the randomized relax-and-round method for MAP inference
in MRFs

Evaluated in the RBB. RRR sometimes performs better than annealed
Gibbs, and always give annealed Gibbs a better initialization.

Generate near-MAP samples
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