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Abstract

Natural language interfaces have the potential to complement GUIs and programming for many

tasks, and enable all of us to better communicate with computers. However, until computers think

like humans, they may not be able to satisfactorily understand human language, and we might have

to settle for adaptive language interfaces where human users have to partially adapt to the capabili-

ties of computers as computers adapt to human communication preferences. Because static datasets

do not account for system capabilities, such adaptation must be part of an interactive learning pro-

cess.

In this thesis, we describe two extremes of interactive language learning—learning starting from

scratch, and learning by “naturalizing” a programming language. In starting from scratch, the hu-

man can use arbitrary languages. The computer does not understand any language initially, but it

has the ability to learn based on what the human selects as the correct interpretation. In natural-

izing a programming language, the human must use a programming language initially. Through

the naturalization process, a community of users can collectively teach the computer to understand

languages that they prefer more. With a starting programming language, users can provide much

stronger definitional supervision beyond simple selection of the correct answer.

To start from scratch, we introduce a new language learning setting relevant to building adaptive

natural language interfaces. It is inspired by Wittgenstein’s language games: a human wishes to

accomplish some task (e.g., achieving a certain configuration of blocks), but can only communicate

with a computer, who performs the actual actions (e.g., removing all red blocks). The computer

initially knows nothing about language and therefore must learn it from scratch through interaction,

while the human adapts to the computer’s capabilities. We created a game called SHRDLURN in a

blocks world and collected interactions from 100 people playing it. First, we analyze the humans’

strategies, showing that using compositionality and avoiding synonyms correlates positively with

task performance. Second, we compare computer strategies, showing that modeling pragmatics on

a semantic parsing model achieves a higher accuracy for more strategic players.
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On the other extreme, we seed the system with a core programming language and allow users to

“naturalize” the core language incrementally by defining alternative syntax and increasingly com-

plex concepts in terms of compositions of simpler ones. Starting with a core language allows the

computer to go beyond learning from simple supervision signals like selecting the right interpreta-

tion to learning from complex definitions that the users provide. In a voxel world, we show that a

community of users can simultaneously teach one system a diverse language and use it to build 240

complex voxel structures. Over the course of three days, these users went from using only the core

language to using the naturalized language in 85.9% of the last 10K utterances.

Experimentally, we show that our system has sufficient interactive learning ability so that the

users and the system can negotiate their language through interaction and reach a language that

is natural to the user and understandable by the system; and the resulting languages are diverse

and adapted to the task but can deviate from standard English. We hope such adaptive language

interfaces can improve human-computer communication even when computers capabilities differ

significantly from humans.
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Chapter 1

Introduction

1.1 Overview

Natural language is a powerful method of communication among humans. Getting computers to

understand natural language has been a goal and benchmark of AI since the celebrated Turing test

(Turing, 1950). Usually, natural language refers the language used by fluent native speakers in

their daily lives. However, if the computer has different capabilities from the human, then the ideal

language of communication might also differ from the standard natural language (e.g. English with

standard vocabularies) that is adapted to the human action space (i.e. what humans do in our daily

lives). One reason is that most utterances in a natural language fall outside of the computer action

space, and thus are meaningless to the computer. For example, a guest might give the following

instruction to the hotel concierge:

(1) “please give me a wakeup call at 7am for my flight tomorrow morning, thanks”

This instruction uses “please” and “thanks”, to express politeness, which makes a human more likely

to oblige. Redundantly including both “7am” and “morning” make it less likely misunderstood or

misremembered. “for my flight” can imply that more calls are appreciated should the first one

fail, as opposed to “for breakfast”. However, current computer systems do not have these human

features, such as being sensitive to politeness, forgetting information, and performing common

sense reasoning. If all that the system does is setting alarms then the language use might adapt

accordingly:

(1) “set alarm at 7am”

(2) “alarm 7am”

1



CHAPTER 1. INTRODUCTION 2

On the other hand, the computer has many useful capabilities not usually performed by a hu-

man, (e.g. searching the internet, or running a particular program with a particular setting) and the

natural language might not have the appropriate vocabulary and precision to express these meanings

unless terms and conventions are specifically invented. For example, terms such as email, download,

and google are part of English because the corresponding computer capabilities became important

enough to be incorporated in natural language. For another example, programming languages are

elaborately designed and refined to express meanings in the computer action space precisely. Con-

sider the following bash command and its English translation

(1) unzip -j backup.zip *.txt -x image/

(2) “extract all files ending with "txt" contained in backup.zip to the current directory, but exclude

those files in the image folder and remove internal directory structures.”

(3) unzip *.txt in backup.zip exclude image and flatten

The corresponding English is much longer because it must explicitly contain some information

already implied by the context of unzip. For example, “image” is a folder in the context, but using

“image” to refer to a folder is unconventional in standard English. In context, words like *.txt,

flatten, and unzip are shorter than their English counterparts and less ambiguous. While English (2)

might make more sense to some users than the adapted utterance (3), the benefit might be marginal

because they still need to know the meaning of “extraction” and “internal directory structures”.

Long natural language utterances like (2) are likely harder to process by the computer than (3),

which is shorter and only specifies more essential information. While (1) is even shorter than (3),

users have to remember the options j and x as well as the order of the arguments if they want to

produce the command (1). In contrast, the adapted utterance (3) is more human-friendly than the

bash command (1), and more concise and easier for the computer to understand than English (2).

In this example, even proper English would not make sense to people with no knowledge of the

computer action space, and few people can produce the correct computer commands effortlessly. A

tradeoff is present here—a user with no trouble recalling all bash options might as well produce a

precise command that is fully adapted to the computer action space, and a user who has no idea what

the computer does might find it easier to produce English. Despite this tradeoff, the more adapted

language (3) might have an edge in usability over both English and command.

This example illustrate that the goal of communicating with computers in English could be mis-

guided. Besides requiring major advances so the computer can become as capable as humans, this
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goal also excludes many useful computer actions that are unintuitive to humans, and unnatural to ex-

press in natural language (Kushman and Barzilay, 2013; Gulwani and Marron, 2014; Lin et al., 2017

2017). Even when the action space is intuitive (Zelle and Mooney, 1996; Berant et al., 2013; Tellex

et al., 2011; Campagna et al., 2017), the computer does not perform these actions in a similar way

as humans. Due to such mismatch, improving human/computer communication might require the

human and the computer to adapt to each other’s capabilities and languages. Adaptation is common

in human communication—changes happen constantly in natural language and are driven by both

predictable forces and randomness (Campbell, 1998; Ullmann, 1962). Many domains have spe-

cific sublanguages that are very different from the base natural language (Kittredge and Lehrberger,

1982). People also adapt to communication channels such as texting and telephone. Since adapta-

tion is natural to humans, they are capable of adapting to the computer as well. For example, people

are capable of learning a programming language and an API. Even when the system is intended

to understand natural language, people adapt by using more terse Google-ese and virtual assistant

commands so these systems are less likely to be distracted and are more likely to work. However,

human adaptation requires significant learning efforts especially if computers continue to gain new

abilities. In contrast, current computers do not adapt to humans automatically. In the standard ap-

proach, where we first collect a static dataset and then train a system, adaptation is unlikely because

the dataset is not affected by the system capabilities.

Thesis. If the computer can learn to communicate by interacting with humans, then it can adapt

to human preferences in an automatic way, and perhaps human/computer communication would

improve. Building systems that have interactive learning abilities, and studying how human users

communicate with these adaptive systems is the subject of this thesis. In this work, we give the

computer some ability to learn language through interaction using semantic parsing and machine

learning techniques. Importantly, while the computer adapts to human preferences, the human also

learns to adapt to the computer through interaction. This way, the human can accommodate the

action space and language ability of the computer, and we have hopes to improve communication

even if the computer has limited language learning and understanding abilities. In contrast, aiming

directly at standard natural language with a limited system and without adapting to the computer

results in suboptimal language and user deception.

In the body of this thesis, we describe two extremes of interactive language learning—learning

starting from scratch, and learning by “naturalizing” a programming language. In starting from
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scratch, the human can use arbitrary language initially, and the computer learns from human se-

lection. In “naturalizing” a programming language, the human must use a programming language

initially. Through the “naturalization” process, the community of users can collectively teach the

computer to understand a language that they prefer more. With a starting programming language,

users can provide much stronger definitional supervision beyond simple selection of the correct

answer.

Our first extreme (Chapter 4) is to start from scratch—we introduce a new language learning

setting relevant to building adaptive natural language interfaces. It is inspired by Wittgenstein’s

language games (Wittgenstein, 1953): a human wishes to accomplish some task (e.g., achieving

a certain configuration of blocks), but can only communicate with a computer, who performs the

actual actions (e.g., removing all red blocks). The computer initially knows nothing about lan-

guage and therefore must learn it from scratch through interaction, while the human adapts to the

computer’s capabilities. We created a game called SHRDLURN in a blocks world and collected

interactions from 100 people playing it. First, we analyze the humans’ strategies, showing that us-

ing compositionality and avoiding synonyms correlates positively with task performance. Second,

we compare computer strategies, showing that modeling pragmatics on a semantic parsing model

accelerates learning for more strategic players.

On the other extreme (Chapter 5), we seed the system with a core programming language and

allow users to “naturalize” the core language incrementally by defining alternative syntax and in-

creasingly complex concepts in terms of compositions of simpler ones. In a voxel world, we show

that a community of users can simultaneously teach one system a diverse language and use it to

build 240 complex voxel structures. Over the course of three days, these users went from using only

the core language to using the naturalized language in 85.9% of the last 10K utterances.

In both settings, learning language through interaction and adaptive communication are central

considerations. In order to build systems that better support interactive learning, we develop new

settings, model pragmatics in an online fashion, and propose a grammar induction method that take

advantage of interaction. Experimentally, we see evidence that

1. for the interactive learning ability that we provide, users and the system can negotiate their

language through interaction and reach a point that is natural to the user, and understandable

by the system;

2. the resulting languages are diverse, adapted to the task, and can deviate significantly from

standard English.
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Programming language Natural language
precise and powerful ambiguous, powerful as well

easy for computer to understand easy for humans to produce

clear but uncompromising syntax ambiguous but flexible syntax

fixed, but changes with human-in-the-loop adapt through use

Table 1.1: A contrast of programming language vs. natural language

In the rest of this thesis, we start by discussing criteria and existing approaches for natural

language interfaces in Chapter 2, and background on semantic parsing in Chapter 3. Then we dive

into learning language games in Chapter 4 and naturalizing a programming language in Chapter 5.

1.2 Natural language vs. programming language

In this section, we want to contrast NLIs with programming languages and discuss why each might

be preferable. For many of the applications we are interested in, programming languages are suc-

cessful and powerful of communicating with computers. Despite recent divergence, linguistics

influenced programming languages since its early days. Context-free grammars, a formalism devel-

oped for modeling natural language, is backing most modern programming languages. An obvious

and important reason to prefer NLIs is that people are already skilled at natural language, and

learning to program requires effort. While particular languages are relatively stable, systems and

interfaces change much more frequently and people must keep learning and adapting. More funda-

mentally, natural language makes extensive use of context, so utterances can be more concise when

useful information are inferred from the context.

It is often debated if natural language is an appropriate medium (Dijkstra, 1978; Androutsopou-

los et al., 1995) for communicating with computers since programming languages are fully adapted

to the computer action space, where all meanings can be expressed precisely. Since all programming

languages are precise, precision clearly does not determine if a particular programming language

is suitable for a particular task. Instead, programming languages change and adapt over time in a

process that involves many humans in the loop, who get experience using a programming language,

and then use this experience to improve the language. While strongly-typed, strict languages where

the compiler checks for many potential errors might be preferable when building large software

systems, more permissive languages can be more convenient for ad hoc tasks. Verbosity can make

a big difference in the user experience even when little semantic difference exists (markdown vs.

HTML, JSON vs. XML, etc.)
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Some still seem to equate "the ease of programming" with the ease of making un-

detected mistakes. . . . The "naturalness" with which we use our native tongues boils

down to the ease with which we can use them for making statements the nonsense of

which is not obvious. . . . From one gut feeling I derive much consolation: I suspect that

machines to be programmed in our native tongues–—be it Dutch, English, American,

French, German, or Swahili— are as damned difficult to make as they would be to use.

(Dijkstra (1978))

Although ambiguities are eventually resolved, programming languages have many features that

use potential ambiguities to improve human usability. Additional rules such as precedence and

associativity are used to resolve order of operation related ambiguity that is awkward to specify

using the grammar rules. These simple rules merely allow programming languages to avoid some

parenthesis, but that already improves human usability. Scoping allows the same symbol to take on

different meanings depending on the context. ’-’ is either unary or binary and may take different

types of operands depending on context. In addition, features such as polymorphism, operator

overloading, and type inference use context to determine the semantics in a fairly general way. These

features are comparable to pragmatic reasoning in natural language. By leaving inferable details

unspecified, programs can be shorter and written at an appropriate generality, which is appreciated

by human users.

However, most programming languages are deliberately backed by an unambiguous context-

free grammar of some type for fast parsing and analysis. These restrictions forbid more powerful

methods for resolving potential ambiguities using context other than a few precise rule-based meth-

ods. If we relax the precise syntax and semantics, then we can have even more freedom to make

languages more human friendly than if we stay within the confines of programming languages.

While going to a natural language is one approach, there is also a big area in between where we

can relax standard programming language restrictions without immediately using a standard natural

language.

Exploring this middle area means that we lose systematic ways for resolving ambiguities and

we need users to resolve the remaining ambiguities. A simple proposal is to stay in domains where

it is easier to inspect potential ambiguities rather than making the language precise. This would be

the case when it is easier for the user to visually look at all the candidates and determine if they are

desired than to read programs. Ambiguity propagates when ambiguous statements are used in other

statements and unresolved ambiguities multiply when combined in higher level definitions—we

deal with this problem in Chapter 5.
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1.3 Blocks world

Most of our experiments are done in a blocks world domain, which has a long history since Wino-

grad (1972). We argue why this is a still a relevant setting to do experiments, and note some of its

limitations.

Recently, blocks world has been identified by the DARPA Communicating with Computers

program as an unsolved problem that is useful to tackle again with recent advances in AI/ML.

While blocks world is a toy domain, it is intuitive, easily crowdsourced and yet captures many

difficulties of language understanding. Because the language is grounded, goal-oriented and visual,

failure cases tend to be very apparent compared to most dialogue tasks. For the purpose of testing

adaptive language interfaces, it is appealing to tackle the simplest unsolved problem that still has

the essential features of interests. In this setting, we can study reasoning about entities, properties,

and the emergence of abstract, higher-order concepts from groups of blocks. For example, voxel-

based games like Minecraft created highly complex worlds out of blocks. Here are some examples

in blocks world

• Arbitrary world knowledge: “add the binary encoding of the first row to the second, put the

result in the third”, “add the least amount of blue blocks so the scene looks like a cat”

• Vagueness: “connect the red and yellow blocks”, “add some red to the top cube”

• Context dependence and coreference: “add a green block top, add another one”, “add a dog,

and another one besides it”

• Complex actions: “move up 10 spaces and left 5 spaces and fill the path with yellow”, “red

cube size 5”, “rotate the chair 90 degrees”, “chair with red seat and yellow legs”

Limitations. Restricting to blocks world also many limitations. First, users might have a variety

of intents, especially for virtual assistants, where the capabilities of the interface might be opaque

to the users and identifying user intent is already challenging. Second, while rich in compositional

phenomena, the lexical semantics is impoverished in blocks world. While compositional semantics

is arguably more interesting, lexical semantics can be very challenging in other tasks like interfacing

with an open domain databases where there are many entities and relations, large vocabulary sizes,

and a hierarchical type system. Third, interfacing with unintuitive computer systems such as bash,

data analysis and plotting might require different kinds of adaptations than in blocks world, where
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humans have strong intuitions on how blocks can be manipulated and referred to. Even though

users have strong intuitions on the “physics” of blocks world, computer simulations might derivate

from that. People also have intuitions related to blocks that is not realized in the computer action

space. For example, people tend to think in terms of objects they can build with blocks such as

chairs and cats. Our system in Chapter 5, however, only supports procedural descriptions of how to

build objects instead of declarative descriptions of objects. Finally, blocks world is fully-observable,

deterministic, turn-based, and discrete, which excludes some interesting phenomena.

1.4 Related work

Grounding. Our work connects with a broad body of work on grounded language, in which lan-

guage is used in some environment as a means towards some goal. Traditional work like Winograd

(1972) had sophisticated narrow domain understanding, but no learning. More recent examples in-

clude playing games (Branavan et al., 2009, 2010; Reckman et al., 2010) interacting with robotics

(Tellex et al., 2011, 2014), and following instructions (Vogel and Jurafsky, 2010; Chen and Mooney,

2011; Artzi and Zettlemoyer, 2013) The main framework we use, semantic parsing, is often con-

cerned with grounded language (Kollar et al., 2010; Matuszek et al., 2012; Artzi and Zettlemoyer,

2013).

Role of interactivity in human language learning. Examining language acquisition research,

there is considerable evidence suggesting that human children require interactions to learn language,

as opposed to passively absorbing language, such as when watching TV (Kuhl, 2004; Sachs et al.,

1981). However, these works focus on attention and social interactions rather than the the available

learning signal.

Krashen (1982) suggests that when learning a language, rather than consciously analyzing in-

creasingly complex linguistic structures (e.g. sentence forms, word conjugations), humans advance

their linguistic ability through meaningful interactions.

In contrast, the standard dataset setting has no interaction. The feedback stays the same and does

not depend on the state of the system or the actions taken. We think that interactivity is important,

and that an interactive language learning setting will enable adaptive and customizable systems,

especially for resource-poor languages and new domains where starting from close to scratch is

unavoidable.
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Learning from instructions. Azaria et al. (2016) presents Learning by Instruction Agent (LIA),

which also advocates learning from users. They argue that developers cannot anticipate all the

actions that users want, and that the system cannot understand the corresponding natural language

even if the desired action is built-in. Like Jia et al. (2017), Azaria et al. (2016) starts with an

ad-hoc set of initial slot-filling commands in natural language as the basis of further instructions—

our approach starts with a more expressive core PL designed to interpolate with natural language.

Compared to previous work, this work studied interactive learning in a shared community setting

and hierarchical definitions resulting in more complex concepts.

Rapidly extensible language. Rapidly Extensible Language (Dostert and Thompson, 1969a,b;

Thompson and Thompson, 1975) has a similar goal as ours in Chapter 5. They were particularly in-

terested in a language that is natural for a specific user, rather than a general natural language. They

strongly argued for having idiosyncratic semantics for each use case. Similar to us, they emphasized

the importance of language use in context, and realized that the key to improve communication is

to make use of more context, rather than aiming at the language of a fluent native speaker.

In order to customize terms in the language, they used definitions like

(1) def: sex ratio of “sample”: (number of “sample” who are male)*100/(number of “sample”

who are female)

(2) def: Mazulu crone: Mazulu female who was born before 1920

(3) What is the sex ratio of the children of Rilazulu crones?

While the core intuition and goals are highly similar to us, the available techniques and com-

putational power is very different. In particular, we have the advantage of having better machine

learning techniques and easy access to a crowd of users to gather data and test system changes.

Adaptation in human communication. In order to communicate efficiently, language should be

appropriate to the subject, or action space. One reason why natural language can express an amaz-

ingly broad set of meanings is that people are very adaptive in their language use. For example,

more specific languages and protocols are used to enable more precise communication in games

and mathematics where ambiguities are less useful and less tolerable. Most professions have their

own jargons, where existing words take on new meanings and new words are coined. The medium

of communication can play a role, for example, people adapt to noisy channels like telephone by us-

ing more distinctive words to represent characters redundantly, escape censorship using alternative
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characters, and adapt to 140 character messages and tweets (i.e. textese). Most importantly, peo-

ple adapt to their audience in a cooperative way, giving rise to different word usage and pragmatic

phenomena (Grice, 1975).

Grammar induction. Grammar induction is generally a difficult task, but necessary if we want

to learn from weaker supervision. In a general context, “grammar induction” usually refers to unsu-

pervised grammar induction, where the goal is learning a PCFG or some form of grammar from text

without any labels. In semantic parsing, “grammar induction” means semantic grammar induction,

where we have both text and logical form labels, but no information on how to derive the logical

form from text (Kwiatkowski et al., 2010; Zettlemoyer and Collins, 2005, 2007; Kwiatkowski et al.,

2010, 2011). This difference is a consequence of semantic grammars also having rules specifying

the semantics in addition to the left/right sides of a CFG.

Grammar induction is the main driver of learning in Chapter 5, where the core language and

interaction gives us some leverage. In particular, we have both the utterance and derivations for the

body of the definitions since users had to make the body executable. In the body, the core language

structure can remain apparent in many utterances, which results in a fair amount of string overlap.

Unlike the GENLEX style grammar induction (Zettlemoyer and Collins, 2005), which use all

possible spans, we are very conservative and only induce high precision rules, which is due to the

lower tolerance of a large number of candidates in the interactive setting.



Chapter 2

Natural language interfaces

2.1 Natural language interfaces (NLIs)

As speech recognition works better and mobile becomes more ubiquitous, natural language under-

standing is increasingly the limiting factor. Through commercial virtual assistants like Alexa, Siri,

Google Now, Cortana, etc., many users are already embracing spoken commands for simple tasks

such as setting an alarm, navigation, playing music, and interacting with the Internet of Things.

However, while handling simple commands, these systems usually fail for simple compositional

commands such as “play a Beatles song for my 7am alarm”

1

or “set an alarm 1 hour before my in-

terview”. While handling such utterances is the goal of semantic parsing (Chapter 3), it is typically

not deployed nor solved. Currently, when complex commands work, it is usually because the de-

veloper anticipated the particular scenarios and handling them specifically. While users still benefit

from always-on responsiveness and hands-free convenience, the expressive potential of a language

interface is severely limited by the lack of better language understanding.

We consider the user initiative case where the human wants the computer to do some task,

the human communicates with the computer, and the computer performs some actions based on

what the human said. Some examples are analyzing and plotting data (Gulwani and Marron, 2014),

querying databases (Zelle and Mooney, 1996; Berant et al., 2013), manipulating text (Kushman and

Barzilay, 2013), or controlling the Internet of Things (Campagna et al., 2017) and robots (Tellex

et al., 2011).

1

Tested in June 2017 on Alexa

11
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2.1.1 Idealized NLI

We would like to clarify some distinct goals and approaches to NLIs. To do this, we consider the

wizard of Oz setting for user initiative NLIs, where another human, call them the wizard, communi-

cates with the human user, and performs the corresponding action. Suppose that the wizard is also

a computer expert who can write arbitrary programs in addition to understanding natural language.

The wizard is always helpful in this case, since it can

• convert the desired action to a program that the computer can execute if the desired action is

possible,

• explain why and give suggestions on alternative if the desired action is not possible,

• and request any clarifications as needed.

While such a capable system is extremely useful, it is also fairly unrealistic when the computer

has a small and fixed action space. To fully understand an utterance can require knowing how to do

things to various degrees.

(1) write an email to say no politely

(2) arrange the blocks to build a black cat

(3) go to the supermarket and buy fruit on sale

(4) add more examples to my thesis

(5) forward student emails to the appropriate TA

(6) write the show

Arbitrary knowledge and capabilities may also be required even if we just want to parse and

represent utterances in the abstract. In an example given by Bar-Hillel (1964), “The pen is in the

box” and “The box is in the pen”, the meaning of “pen” is more likely to be a writing instrument and

an animal enclosure, respectively. For another example, “the patient left the operating room in good

condition” is unlikely to mean that the patient cleaned the room. Winograd schemas (Winograd,

1972) are more systematic examples constructed for demonstrating how arbitrary world knowledge

might be needed to resolve pronouns:

(1) The city councilmen refused the demonstrators a permit because they [feared/advocated] vi-

olence.

(2) The trophy doesn’t fit into the brown suitcase because it is too [large/small].
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(3) Paul tried to call George on the phone, but he wasn’t [available/successful].

(4) The drain is clogged with hair. It has to be [cleaned/removed].

In these examples, what the pronoun refers to depends on the choice of A vs. B in [A/B], and these

cannot be resolved using the syntax of the language.

Continued progress in limited domain and approximate approaches (including with

speech). Very long term research is needed to get a handle on human-level natural

language. (Terry Winograd)

2.1.2 Restricted NLIs

Today’s computers still have a limited and rigid action space different from humans, and do not

have sufficient common sense / world knowledge. To capture the utilitarian viewpoint of language

understanding, we consider the restricted setting of communicating with a given software system

or API. In this restricted setting, if the desired action described by natural language is outside of

the system action space, then the computer is allowed to fail without explanation. Here are some

examples which still fall within the scope of the restricted setting, but are not handled by current

systems.

(1) call Bob every hour until he picks up

(2) lowercase every word in section headings of my thesis, except the first word

(3) book me the cheapest non-stop tickets from SF to NYC, that departs within 3 days after March

18, and takes off after 12noon.

(4) move my meeting with Alice to just after my meeting with Bob for the next 3 weeks

Most of these utterances are beyond the capability of current systems, but such utterances should

be possible since they can be represented by a short program. The examples above can be spoken

to a human assistant. and users might have strong intuitions on what human assistants can do for

similar actions. Despite being intuitive to humans, computer systems may accomplish these actions

in a different way from humans assistants. As long as actions are performed by a rigid computer

system, the utterances still requires adaptation. As far as the computer is concerned, these utterances

are similar to the utterances below, which is less intuitive to humans and the corresponding actions

do not appear in the language of a fluent native speaker in their daily lives.

(1) put red cubes on all but the leftmost orange cube
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(2) form a path made of yellow blocks from the top block to the red block

(3) start a new repo containing only the directory A, but keep the commit history

(4) find all files that ends with .java and print out the names of their public methods

(5) visualize mileage per gallon vs. horse power in a scatter plot

While unintuitive utterances might require more human adaptation, they are not very different from

the more human-intuitive ones as far as the computer is concerned, as long as they are both convert-

ible to short programs. For restricted NLIs, the language is restricted to the computer action space,

and the users need to have some understanding of the action space in order to productively interact

with the computer. Currently, these interactions are typically done via a programming language or

GUIs. The popularity of stackoverflow.com shows that many people found it easier to write these

utterances targeted at other human experts than to write the corresponding code or finding the GUI

action. While still challenging, this is where semantic parsing is promising, and adaptive language

interfaces can play an important role.

2.2 Approaches to NLIs

In this section, we discuss common approaches to NLIs using a dialogue from 2001: a space odyssey

as the running example.

Dave: Open the pod bay doors, HAL.

HAL: I’m sorry, Dave. I’m afraid I can’t do that.

Dave: What’s the problem?

HAL: I think you know what the problem is just as well as I do.

Dave: What are you talking about, HAL?

HAL: This mission is too important for me to allow you to jeopardize it.

. . .

2.2.1 Restricted responses

Dave: Open the pod bay doors, HAL.

HAL: press 1 for services in English, press 2 for services in Spanish

Dave: 1

HAL: Press 1 for navigation system, press 2 for life support system, . . . , press 5 for pod bays,

. . . , press # for main menu
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...

A simple, effective and commonly used solution is to restrict the responses that the human user is

allowed to produce. This is commonly used in Interactive Voice Response (IVR) systems for tele-

phone customer support, as well as in some text-based chat systems. By restricting the responses,

we can workaround the language understanding problem altogether since the system only has a

small number of states and transitions. By responding in natural language, this approach can still

give the appearance of having a dialogue with computer.

2.2.2 Rule-based system

Dave: Open the pod bay doors.

Alexa: I’m sorry Dave. I’m afraid I can’t do that, and we’re not in space.2

Dave: What’s the problem?

Action! pod bay doors’: respond("I’m sorry Dave...")

Action! What’s the X: lX .respond(I think you know what the X is just as well as I do.)

Action! open X : lX . X.open()

Rule-based systems are often representationally quite sophisticated and model pretty deep as-

pects of language. They typically use a semantic grammar that matches a predefined pattern in the

utterance and specifies how this pattern should be interpreted (i.e. semantics). These rules can be

compositional, and can implement elaborate features just like a programming language except the

patterns follow natural language conventions more closely, and as a result are less uniform and more

ambiguous than programming languages.

Early systems that were built and studied since the 60s were rule-based. For example, Bo-

brow (1964) solved word problems found in high school algebra books such as “If the number of

customers Tom gets is twice the square of 20% of the number of advertisements he runs, and the

number of advertisements is 45, then what is the numbers of customers Tom gets?” Woods et al.

(1972) was an important early system that helped scientists query a database of moon rocks, an-

swering questions like “list all the rocks that contain chronite and ulvospinel”. Winograd (1972)

described a system called SHRDLU, which could answer questions, perform actions, even learning

from definitions in a blocksworld.

Person: DOES A STEEPLE

Computer interrupting: SORRY, I DON’T KNOW THE WORD "STEEPLE".
2

Alexa Easter-egg
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Person: A "STEEPLE" IS A STACK WHICH CONTAINS TWO GREEN CUBES AND A

PYRAMID.

Computer: I UNDERSTAND.

Person: ARE THERE ANY STEEPLES NOW?

Computer: NO.

Person: BUILD ONE.

Computer: OK. (does it)

Person: CALL THE BIGGEST BLOCK "SUPERBLOCK".

Computer: OK.

Person: HAVE YOU PICKED SUPERBLOCK UP SINCE WE BEGAN?

Computer: YES.

Person: WHY DID YOU DROP IT?

These systems handled some complex linguistic phenomena that integrate syntax, semantics,

and reasoning in an end-to-end application. While they implemented complex functionalities using

a rule-based approach, these transcripts do not imply that similar utterances would also work. For

example, in the MASQUE system “What are the capitals of the countries bordering the Baltic and

bordering Sweden?” succeeds, while “What are the capitals of the countries bordering the Baltic

and Sweden?” fails (Androutsopoulos et al., 1995). Such failures are less transparent and less

debuggable compared to errors in programming languages. While it is tempting to think that better

grammar engineering will lead to NLIs that are both powerful and have high coverage, satisfying

coverage has not been realized in the half century following these early systems. Handling in-

domain variations and generalizing to more open domain language remain challenging.

2.2.3 Learning-based systems

Machine learning techniques have already found success in many areas of natural language under-

standing such as machine translation, syntactic parsing, and semantic parsing. In this approach, we

first collect a dataset of natural language utterances and their corresponding meaning annotations,

then we use a learning algorithm on this dataset. However, learning from corpora is different from

learning grounded language, which is the focus of this thesis.

Corpus-based

Dave: Open the pod bay doors, HAL.
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HAL: I’m sorry, Dave. I’m afraid I can’t do that.

Dave: What’s the problem?

HAL: I think you know what the problem is just as well as I do.

Dave: What are you talking about, HAL?

HAL: I do not know what you are talking about

One learning setting is to collect some dialogue transcripts, and learn from the transcripts text.

Recently, end-to-end deep learning has been popular for this task. For language interfaces, this is

sensible for a chatterbot, where the goal is might be to keep the dialogue flowing. Recent neural

models can be trained by predicting the next utterance in a corpus of dialogue data. Since it is less

clear exactly what kind of information is contained in these datasets, and what kind of information

can be learned by neural networks, this setting creates opportunities to obscure what the system

actually understands. For example, Li et al. (2016b,a) observes several phenomena suggesting the

lack of real understanding, such as a propensity to give generic response such as “I do not know

what you are talking about” then to be stuck in a fixed loop, and inconsistent responses such as first

responding “I am 29” then later responding “I am 7” when asked “how old are you?”.

Even before any machine learning, Weizenbaum (1966) showed that it is possible to sustain con-

versations in a psychotherapy setting by using rule-based transformations on texts. Perhaps more

apparent than in neural models, ELIZA had no hope of achieving real language understanding.

However, generating natural language in response can give the appearance of language understand-

ing and might even be helpful to human users. However, being helpful does not imply meaningful

progress towards better language understanding. For example, journals, dictionaries, and text search

are also helpful tools involving language, but takes no step towards language understanding.

Grounded

Crucially, grounding is missing if we only work with a corpus of text. For example, while the

Ubuntu corpus (Lowe et al., 2015) contains many dialogue texts about technical issues in Ubuntu,

it does not contain enough information to reconstruct Ubuntu or any hardware running Ubuntu

that might be necessary to solve technical issues. Another example is movie subtitles, where the

motion picture is missing. More importantly, world knowledge that is assumed of the audience is

never explicitly mentioned in a movie. While it might be possible to infer some of such grounding

information from language, the required learning capabilities probably have to exceed human—just

imagine learning to solve Ubuntu problems without knowing what Ubuntu is, or learning another

language by watching movies. Even if we are allowed to know about operating systems and another
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human language, which helps narrowing down how to ground the language, the remaining learning

task is still formidable to human learners.

In this thesis, we study the grounded setting for language learning and take a utilitarian view

where understanding is solely evaluated by whether the computer can perform the action corre-

sponding to the utterance. This setting make failures more apparent, and successes will at lead to

better NLIs. In particular, we study how language understanding grounded forcibly to a particular

action space where the computer has to learn and human has to adapt. Semantic parsing is our main

approach and we discuss it in Chapter 3.

2.3 Utilities and dimensions of NLIs

There are a wide range of scenarios where NLIs are potentially useful. However, there are also areas

where using a programming language / GUI is far superior. In this section, we break down NLIs

along several dimensions in order to better discuss their utilities.

2.3.1 Human action space vs. computer action space

Common actions for humans might be rare or impossible for current computers. For example:

• require movement and vision: “go to the supermarket and get eggs”

• ability to socialize, human norms: “let’s catch up over coffee”

• politeness and intention: “please call to wake me up for my 9am flight, thanks!”

• require human: “send a happy birthday card to mom every year”

In addition to physical action, a significant part of the human action space involves using language

to affects the mental states of other humans.

At the same time, reference to computer actions might rarely occur in human language, or only

became popular when the corresponding computer action became popular. For example, chmod

777 blah and git commit -a have no easy English equivalents; “email Chris about lunch”

and “google HAL 9000” became part of human language after email and search became capabilities

important to many people. NLIs is most suitable for the computer action space. especially where

the actions are somewhat intuitive to humans. Targeting the human action space might be suitable

for hybrid human-in-the-loop systems and chatterbots, than goal oriented settings. Affecting human
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mental state may not require actual understanding, as demonstrated by ELIZA, which approximated

a psychotherapist using rule-based text transformations.

2.3.2 Broad coverage vs. specific domain

Broad coverage language interfaces are best exemplified by the virtual assistants. While actual broad

coverage is the goal, current virtual assistants are very limited in their ability to understand complex

language, and can be extremely opaque to the users which utterances would work. Within a narrow

domain, more complex language can be used, and this is exemplified by NLIDBs. Human language

seem to cover both, where terms are invented and specialized for specific domains. While board

coverage NLIs is more difficult and perhaps more impactful, NLIs for specific domains remain

unsolved.

2.3.3 Occasional vs. volume users

Compared to a volume user, an occasional user of a computer system is not familiar with or forgetful

of the functions of the system. A system that understands a standard natural language is probably

most useful for the occasional user, where discoverability is important.

The volume user is familiar with the capabilities of the system, and might desire a specialized

code language suitable for the domain. Given that the volume user spends a large amount of time

interacting with the system, saving every keystroke and utterance is a meaningful. Programming

languages designed to the capabilities of the system are likely most useful to the expert user.

An adaptive NLI could start with a less efficient but general language suitable for the occasional

user, and then adapt to an efficient, perhaps code-like, language suitable for the volume user. This

distinction is related to expert vs. novice users, but not quite the same because the occasional user

might be a domain expert and know high-level capabilities of the system while the novice user might

not even understand the system action space.

2.3.4 Ad hoc commands vs. software engineering

The dimension of ad hoc commands vs. software engineering is concerned about tolerance for

ambiguity/inefficiency vs. tolerance of high human effort. One important factor is how often the

action will be repeated.

In cases where the human is actively communicating with some computer system and wants

context dependent actions performed, the human may issue a very specific command that will only
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run once. This is different from expertise, for example, one can be a bash expert and issue many ad

hoc commands in bash. It is more important to minimize human effort rather than precision when

we do not need to handle all edge cases nor be valid in all context.

In contrast to ad hoc commands, complex software requires components with clean interfaces

and abstractions (e.g. Comparable, Stream, map/reduce, etc.) that would allow even more com-

plex components to be built on top of simpler components. Besides abstractions, some bottleneck

subroutines that are used repeatedly can require good runtime performance—e.g. the code in Fig-

ure 2.1. It would be sensible to spend much labor to optimize these subroutines. In these situations it

is worthwhile to adapt almost entirely to the computer, and pay a high human effort to optimize both

the abstractions and runtime performance. This case is likely unsuitable for an adaptive language

interface.

f l o a t Q _ r s q r t ( f l o a t number )

{

long i ;

f l o a t x2 , y ;

c o n s t f l o a t t h r e e h a l f s = 1 . 5 F ;

x2 = number ⇤ 0 . 5 F ;

y = number ;

i = ⇤ ( long ⇤ ) &y ;

i = 0 x5f3759df � ( i >> 1 ) ;

y = ⇤ ( f l o a t ⇤ ) &i ;

y = y ⇤ ( t h r e e h a l f s � ( x2 ⇤ y ⇤ y ) ) ;

re turn y ;

}

Figure 2.1: Code for fast inverse square root, which is hard to express in anything resembling

English.



Chapter 3

Semantic parsing

3.1 Overview

Semantic parsing is the main approach and default way of thinking used in this thesis and we pro-

vide selected background on executable semantic parsing in this chapter.

1

Semantic parsing is the

task of converting natural language utterances to logical forms, which is traditionally a linguis-

tically/logically motivated representation of meaning. However, we are not too concerned about

the principles behind logical representation and happy to think of the logical form as an arbitrary

program that can be executed to yield some action (sometimes called denotation). This captures a

utilitarian definition of understanding language suitable for natural language interfaces, where the

system is said to understand the utterance if it produces the correct action. For example:

Context:

Utterance: add a cyan block to red blocks

Program: add(hascolor(red), cyan)

Action:

1

some background material is reproduced from (Liang, 2016)

21
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Context: knowledge of mathematics

Utterance: What is the largest prime less than 10?

Program: max(Primes\ (�•,10))

Action: 7

Context: some string to be edited

Utterance: uppercase the first letter of every word

Program: s/\S+/\u$&/g

Action: Some String To Be Edited

These examples require deep language understanding, and it seems difficult for a computer to

directly arrive at the final answer without some form of representation that allows the computer to

reason about the domain. Because ultimately computer have to execute, we can aim at producing

these programs without thinking about if language is fundamentally symbolic, or if there is a general

purpose semantic representation.

Semantic parsing is rooted in formal semantics, pioneered by logician Richard Montague (Mon-

tague, 1973), who famously argued that there is “no important theoretical difference between natural

languages and the artificial languages of logicians.” Semantic parsing, by residing in the practical

realm, is more exposed to the differences between natural language and logic, but it inherits two

general insights from formal semantics: model theory and compositionality.

Model theory. The first idea is model theory, which states that expressions (e.g., primes) are

mere symbols which only obtain their meaning or denotation (e.g., {2,3,5, . . .}) by executing the

expression with respect to a model, or in our terminology, a context. This property allows us to

factor out the understanding of language (semantic parsing) from world knowledge (execution).

Indeed, one can understand the utterance “Add a cyan block to top of every red block.” or “What is

the largest prime less than 10?” without actually computing the answer. Model theory allows for

the decoupling of language understanding from execution.

Principle of compositionality. The second idea is compositionality, a principle often attributed to

Gottlob Frege, which states that the denotation of an expression is defined recursively as a function

of the denotation of its subexpressions. This compositionality is what allows us to have a succinct

characterization of meaning for a combinatorial range of possible utterances. For example, (or

(color red) (row 3)) represents the union of blocks having color red and blocks in the 3rd

row. (or (color red) (row 3)) is composed of the subexpressions (color red), (row 3)
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and lXY. (or X Y). In particular, the denotation of or only depends on the denotation of Y , as

opposed to the text of Y (row 3). So compositionality requires that

J(or (color red) (row 3))Kw = J(or (color red) (or (row 3) (row 3)))Kw.

In logic and programming language, compositionality is usually assumed and rarely needs to be

made explicit. However, natural language utterances often violate a strict form of compositionality.

In natural language semantics, Barbara (1995) states the principle of compositionality as

The meaning of a compound expression is a function of the meanings of its parts and

of the syntactic rule by which they are combined.

For example, idioms usually cannot be analyzed compositionally—e.g. kick the bucket, barking

up the wrong tree. Winograd schema requires pronouns to be resolved based on the meaning of

the whole sentence—e.g. The city councilmen refused the demonstrators a permit because they

[feared/advocated] violence.

This should not be surprising, because otherwise we should be able to write down some compo-

sition rules that can process natural language. Because this messier form of compositionality, data

has a useful role to play in handling ambiguous and non-compositional utterances. Even with the

help of data, however, semantic parsing would work better if a compositional analysis of natural

language can transfer over to the compositional logical form, which then allows for generalization

to unseen data.

3.1.1 Early systems

Like programming languages, logical forms have played a foundational role in natural language

understanding systems since their genesis in the 1960s. Early examples included LUNAR, a natural

language interface into a database about moon rocks (Woods et al., 1972), and SHRDLU, a system

that could both answer questions and perform actions in a toy blocks world environment (Winograd,

1972).

For their time, these systems were significant achievements. They were able to handle fairly

complex linguistic phenomena and integrate syntax, semantics, and reasoning in an end-to-end

application. For example, SHRDLU was able to process “Find a block which is taller than the one

you are holding and put it into the box.” However, as the systems were based on hand-crafted rules,

it became increasingly difficult to generalize beyond the narrow domains and handle the intricacies

of general language.
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3.1.2 Rise of machine learning

In the early 1990s, influenced by the successes of statistical techniques in the neighboring speech

recognition community, the field of NLP underwent a statistical revolution. Machine learning of-

fered a new paradigm: Collect examples of the desired input-output behavior and then fit a statistical

model to these examples. The simplicity of this paradigm coupled with the increase in data and

computation allowed machine learning to prevail. What fell out of favor was not only rule-based

methods, but also the natural language understanding problems. In the statistical NLP era, much

of the community’s attention turned to tasks—documentation classification, part-of-speech tagging,

and syntactic parsing—which fell short of full end-to-end understanding. Even question answer-

ing systems relied less on understanding and more on a shallower analysis coupled with a large

collection of unstructured text documents (Brill et al., 2002), typified by the TREC competitions.

3.1.3 Statistical semantic parsing

The spirit of deep understanding was kept alive by researchers in statistical semantic parsing (Zelle

and Mooney, 1996; Miller et al., 1996; Wong and Mooney, 2007; Zettlemoyer and Collins, 2005;

Kwiatkowski et al., 2010). A variety of different semantic representations and learning algorithms

were employed, but all of these approaches relied on having a labeled dataset of natural language

utterances paired with annotated logical forms, for example:

Context:

Utterance: add a cyan block to red blocks

Program: add(hascolor(red), cyan)

3.1.4 Weak supervision

Over the last few years, two exciting developments have really spurred interest in semantic parsing.

The first is reducing the amount of supervision from annotated logical forms to answers (Clarke

et al., 2010; Liang et al., 2011):
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Context:

Utterance: add a cyan block to red blocks

Action:

This form of supervision is much easier to obtain via crowdsourcing. Although the logical forms

are not observed, they are still modeled as latent variables, which must be inferred from the answer.

This results in a more difficult learning problem, but Liang et al. (2011) showed that it is possible

to solve it without degrading accuracy.

3.1.5 Scaling up

The second development is the scaling up of semantic parsers to more complex domains. Previous

semantic parsers had only been trained on limited domains such as US geography, but the creation

of broad-coverage knowledge bases such as Freebase (Bollacker et al., 2008) set the stage for a new

generation of semantic parsers for question answering. Initial systems required annotated logical

forms (Cai and Yates, 2013), but soon, systems became trainable from answers (Berant et al., 2013;

Kwiatkowski et al., 2013; Berant and Liang, 2014). Semantic parsers have even been extended

beyond fixed knowledge bases to semi-structured tables (Pasupat and Liang, 2015). With the ability

to learn semantic parsers from question-answer pairs, it is easy to collect datasets via crowdsourcing.

As a result, semantic parsing datasets have grown by an order of magnitude.

In addition, semantic parsers have been applied to a number of applications outside question

answering: robot navigation (Tellex et al., 2011; Artzi and Zettlemoyer, 2013), identifying objects

in a scene (Matuszek et al., 2012; Krishnamurthy and Kollar, 2013), converting natural language to

regular expressions (Kushman and Barzilay, 2013), and many others.

3.1.6 Neural models

Like other task in NLP, neural models have been successful in semantic parsing. The scarcity of data

somewhat limits their success, and some way to be more data efficient is needed for these models to

work as well as previous models. For example, Jia and Liang (2016) proposed data recombination,

where they used rules mirroring the logical forms to generate more fake-data; Dong and Lapata
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(2016) build some compositional structure directly into the model; Iyer et al. (2017) learns from

user feedback. Although their performance does not exceed the state-of-the-art yet, neural models

have the advantage of being very general, where not much has to change to apply to other domains.

For example, Konstas et al. (2017) achieved good performance on AMR parsing with less adaptation

to the domain than Artzi and Zettlemoyer (2015).

3.1.7 Data challenge

Perhaps more important than models, data remains a major challenge for semantic parsing. From

a high level, semantic parsing is similar to machine translation in that both translates from one

language to another. However, compared to the 10-100 millions input-output pairs for common

languages such as English/French, and English/Chinese, current semantic parsing datasets are rather

small. For example, Geo880, Regexp824, and freebase917 (Zelle and Mooney, 1996; Kushman and

Barzilay, 2013; Cai and Yates, 2013) all have less than 1000 labels, while ATIS and WebQuestions

(Zettlemoyer and Collins, 2007; Berant et al., 2013) have a few thousand, and WikiTableQuestions

(Pasupat and Liang, 2015) have 22033 question/answer pairs.

One reason is the lack of an universal semantic representation, so it is unclear how to direct effort

at getting more data. For example, all these datasets use a different logical language and we would

not know what labels to collect. One idea is to use general paraphrasing models to map input utter-

ances to the “canonical utterances” of logical forms (Berant and Liang, 2014; Wang et al., 2015).

This reduces semantic parsing to a text-only problem for which there is much more data and re-

sources. One could also use domain-general logical forms that capture the basic predicate-argument

structures of sentences (Kwiatkowski et al., 2013). Abstract meaning representation (AMR) (Ba-

narescu et al., 2013) is one popular representation backed by an extension linguistic annotation

effort. However, solving downstream understanding tasks still require additional work and remains

to be shown how general representations are helpful in our utilitarian criteria of understanding,

which requires an action to be performed based on the language.

Given that domain specific representations seem inescapable if we want executable semantic

parsing, there will be many utterances outside of the scope. In Chapter 1, we argued that language

use have to adapt to system capabilities. This means that datasets have to account for the system

capabilities. One benefit of our interactive systems is that we were able to get relatively large,

adapted datasets (30k-50k utterances labeled by logical forms) that take system capabilities into

account.



CHAPTER 3. SEMANTIC PARSING 27

p✓(z | x, c) / exp(�(x, z, c) · ✓)

x : add a cyan block to red blocks

z : add(hascolor(red), cyan)

c :

y :

Figure 3.1: A natural language understanding problem where the goal is to map an utterance x in a

context c to an action y.

3.2 Framework

3.2.1 Setup

Given an utterance x in a context c, output the desired action y. Figure 3.1 shows the setup for a

question answering application, in which case x is a question, c is a knowledge base, and y is the

answer. In blocks world, x is a command, c represents current set of blocks, and y is the desired set

of blocks after x. In a robotics application, x is a command, c represents the robot’s environment,

and y is the desired sequence of actions to be carried by the robot (Tellex et al., 2011). To build such

a system, assume that we are given a set of n examples {(xi,ci,yi)}n
i=1

. We would like to use these

examples to train a model that can generalize to new unseen utterances and contexts.

3.2.2 Semantic parsing components

We focus on a statistical semantic parsing approach to the above problem, where the key is to posit

an intermediate logical form z that connects x and y. Specifically, z captures the semantics of the

utterance x, and it also executes to the action y (in the context of c). In our running example, z would

be add(hascolor(red), cyan). Our semantic parsing framework consists of the following five

components (see Figure 3.2):

1. Executor: computes the denotation (action) y = JzK given a logical form z and context c. This

defines the semantic representation (logical forms along with their denotations).

2. Grammar: a set of rules G that produces D(x,c), a set of candidate derivations of logical

forms.
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x Grammar c

D

� Model

z Executor y

What is the largest prime

less than 10? primes : {2, 3, 5, 7, 11, . . . }

max(primes \ (� �, 10)) 7

(utterance) (context)

(parameters)

(logical form)

(denotation)

(derivations)

Figure 3.2: Semantic parsing framework depicting the executor, grammar, and model. The parser

and learner are algorithmic components that are responsible for generating the logical form z and

parameters q , respectively.

3. Model: specifies a distribution pq (d | x,c) over derivations d parameterized by q .

4. Parser: searches for high probability derivations d under the model pq .

5. Learner: estimates the parameters q (and possibly rules in G) given training examples

{(xi,ci,yi)}n
i=1

.

We now instantiate each of these components for our running example: add a cyan block to red

blocks

Executor

Let the semantic representation be the language of mathematics, and the executor is the standard

interpretation, where the interpretations of predicates (e.g., hascolor(red)) are given by c and

denotes the set of blocks that has color red.

Grammar

The grammar G connects utterances to possible derivations of logical forms. Formally, the grammar

is a set of rules of the form a ) b .

2

Here is a simple grammar for our running example:

We start with the input utterance and repeatedly apply rules in G. A rule a ) b can be applied

if some span of the utterance matches a , in which case a derivation over the same span with a new

syntactic category and logical form according to b is produced. Here is one possible derivation (call

it d
1

) for our running example:

2

The standard way context-free grammar rules are written is b ! a . Because our rules build logical forms, reversing

the arrow is more natural.
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Rule Semantics Description
Set all() (R1) all stacks

Color cyan|brown|red|orange (R2) primitive color

Color! Set hascolor(c) (R3) stacks whose top block has color c
Set! Set not(s) (R4) all stacks except those in s
Set! Set leftmost|rightmost(s) (R5) leftmost/rightmost stack in s
Set Color! Act add(s,c) (R6) add block with color c on each stack in s
Set! Act remove(s) (R7) remove the topmost block of each stack in s

Table 3.1: Example grammar for blocks world

put cyan on red blocks

(R2) (R2)

cyan red

(R3)

cyan hascolor(red)

(R6)

ROOT[add(hascolor(red),cyan)]

(3.1)

For example, applying (R2) produces category Color and logical form red then applying (R3)

on the span “red blocks” produces category Set with logical from hascolor(red). We stop when

we produce the designated ROOT category over the entire utterance. In general, there could be

exponentially many derivations, and multiple derivations can generate the same logical form.

Model

The model scores the set of candidate derivations generated by the grammar. A common choice used

by virtually all existing semantic parsers are log-linear models (generalizations of logistic regres-

sions). In a log-linear model, define a feature vector f(x,c,d) 2 RF
for each possible derivation d.

We can think of each feature as casting a vote for various derivations d based on some coarse prop-

erty of the derivation. For example, define F = 7 features, each counting the number of times a given

grammar rule is invoked in d, so that f(x,c,d
1

) = [1,1,1,1,1,0,1] and f(x,c,d
2

) = [1,1,1,1,0,1,1].

Next, let q 2RF
denote the parameter vector, which defines a weight for each feature represent-

ing how reliable that feature is. Their weighted combination score(x,c,d) = f(x,c,d) ·q represents
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how good the derivation is. We can exponentiate and normalize these scores to obtain a distribution

over derivations:

pq (d | x,c) =
exp(score(x,c,d))

Âd02D(x,c) exp(score(x,c,d0))
. (3.2)

If q = [0,0,0,0,+1,�1,0], then pq would assign probability

exp(1)
exp(1)+exp(�1) ⇡ 0.88 to d

1

and ⇡ 0.12

to d
2

.

Parser

Given a trained model pq , the parser (approximately) computes the highest probability derivation(s)

for an utterance x under pq . Assume the utterance x is represented as a sequence of tokens (words).

A standard approach is to use a chart parser, which recursively builds derivations for each span of

the utterance. Specifically, for each category A and span [i : j] (where 0  i < j  length(x)), we

loop over the applicable rules in the grammar G and apply each one to build new derivations of

category A over [i : j]. For binary rules—those of the form BC) A such as (R4), we loop over split

points k (where i < k j), recursively compute derivations B[z
1

] over [i :k] and C[z
2

] over [k : j], and

combine them into a new derivation A[z] over [i : j], where z is determined by the rule; for example,

z = z
1

\ z
2

for (R4). The final derivations for the utterance are collected in the ROOT category over

span [0: length(x)].

The above procedure would generate all derivations, which could be exponentially large. Gen-

erally, we only wish to compute compute the derivations with high probability under our model

pq . If the features of pq were to decompose as a sum over the rule applications in d—that is,

f(x,c,d) = Â(r,i, j)2d f
rule

(x,c,r, i, j), then we could use dynamic programming: For each category

A over [i : j], compute the highest probability derivation. However, in executable semantic parsing,

feature decomposition isn’t sufficient, since during learning, we also need to incorporate the con-

straint that the logical form executes to the true denotation (I[Jd.zK = y]); see (3.6) below. To

maintain exact computation in this setting, the dynamic programming state would need to include

the entire logical form d.z, which is infeasible, since there are exponentially many logical forms.

Therefore, beam search is generally employed, where we keep only the K sub-derivations with the

highest model score based on only features of the sub-derivations. Beam search is not guaranteed

to return the K highest scoring derivations, but it is often an effective heuristic.
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Learner

While the parser turns parameters into derivations, the learner solves the inverse problem. The

dominant paradigm in machine learning is to set up an objective function and optimize it. A standard

principle is to maximize the likelihood of the training data {(xi,ci,yi)}n
i=1

. An important point is that

we don’t observe the correct derivation for each example, but only the action yi, so we must consider

all derivations d whose logical form d.z satisfy Jd.zKci = yi. This results in the log-likelihood of the

observed action yi:

Oi(q)
def

= log Â
d2D(xi ,ci)

Jd.zKci=yi

pq (d | xi,ci). (3.3)

The final objective is then simply the sum across all n training examples:

O(q)
def

=
n

Â
i=1

Oi(q), (3.4)

The simplest approach to maximize O(q) is to use stochastic gradient descent (SGD), an iterative

algorithm that takes multiple passes (e.g., say 5) over the training data and makes the following

update on example i:

q  q +h—Oi(q), (3.5)

where h is a step size that governs how aggressively we want to update parameters (e.g., h = 0.1).

In the case of log-linear models, the gradient has a nice interpretable form:

—Oi(q) = Â
d2D(xi,ci)

(q(d)� pq (d | xi,ci))f(xi,ci,d), (3.6)

where q(d) µ pq (d | xi,ci)I[Jd.zKci = yi] is the model distribution pq over derivations d, but restricted

to ones consistent with yi. The gradient pushes q to put more probability mass on q and less on pq .

For example, if pq assigns probabilities [0.2,0.4,0.1,0.3] to four derivations and the middle two

derivations are consistent, then q assigns probabilities [0,0.8,0.2,0].

The objective function O(q) is not concave, so SGD is at best guaranteed to converge to a local

optimum, not a global one. Another problem is that we cannot enumerate all derivations D(xi,ci)

generated by the grammar, so we approximate this set with the result of beam search, which yields K

candidates (typically K = 200); pq is normalized over this set. Note that this candidate set depends
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on the current parameters q , resulting a heuristic approximation of the gradient —Oi.

We have covered the components of a semantic parsing system. Observe that the components

are relatively loosely coupled: The executor is concerned purely with what we want to express inde-

pendent of how it would be expressed in natural language. The grammar describes how candidate

logical forms are constructed from the utterance but does not provide algorithmic guidance nor spec-

ify a way to score the candidates. The model focuses on a particular derivation and defines features

that could be helpful for predicting accurately. The parser and the learner provide algorithms largely

independent of semantic representations. This modularity allows us to improve each component in

isolation.

3.3 Prerequisite background

Having toured the components of a semantic parsing system, we discuss some background particu-

larly relevant to this thesis. For more general information on the components of semantic parsing,

refer to section 3 of Liang (2016).

3.3.1 Lambda dependency-based semantics (DCS)

We make use of lambda dependency-based semantics (DCS) (Liang, 2013) in Chapter 5, which

can be viewed as syntactic sugar for lambda calculus. Consider “how many primes are less than

10?” which can be represented as count(lx.prime(x)^ less(x,10)) in lambda calculus, where

the l operator can be thought of as constructing a set of all x that satisfy the condition; in symbols,

Jlx. f (x)K = {x : J f (x)K = true}. Note that count is a higher-order functions that takes a function

as an argument. In lambda DCS, it would be count(primeu (less.10)), where the constant 10

represent lx.(x = 10), the intersection operator z
1

u z
2

represents lx.z
1

(x)^ z
2

(x), and the join

operator r.z represents lx.9y.r(x,y)^ z(y).

Lambda DCS is “lifted” in the sense that operations combine functions from objects to truth

values (think sets) rather than truth values. As a result, lambda DCS logical forms partially eliminate

the need for variables. Noun phrases in natural language (e.g., “prime less than 10”) also denote

sets. Thus, lambda DCS arguably provides a transparent interface with natural language.

We used lambda DCS to represent sets in Chapter 5 where the core language exposes lambda

DCS in a transparent way. In particular, ‘has R Z’ is the lambda DCS join r.z, which means

lx.9y.r(x,y)^z(y). ‘R of Z’ is the lambda DCS reverse join [!r].z, which means lx.9y.r(y,x)^z(y).

These joins can be chained together where explicit variables can be avoided as long as the chain of
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joins is in a tree structure. This way, common set operations corresponds well with natural language,

for example: ‘has color red or yellow’ means all voxels with color red or color yellow which is (or

(color red) (color yellow)) ‘has row [col of this]’ is (row (!col this)); ‘left and not

has color red’ is (and (!left this) (not (color red))).

3.3.2 Grammar

For Chapter 4, the grammar is just to define a set of candidate derivations for each utterance and

context (see Table 3.1). Note that this is in contrast to a conventional notion of a grammar in

linguistics, where the goal is to precisely characterize the set of valid sentences and interpretations.

Because we will learn a statistical model over the derivations generated by the grammar anyway,

the grammar can be simple and coarse.

Floating grammar rules

(3.1) shows a floating derivation using the grammar in Table 3.1. Note that grammar rules in Ta-

ble 3.1 such as (R4) and (R6) only specify categories, as opposed to (R4’) and (R6’) which also

specify terminal tokens. These floating rules (R4 and R6) merely specified which categories can

be combined, and how to combine them. Order and adjacency are both ignored, whereas their “an-

chored” counterparts (R4’ and R6’) require both order and terminal tokens to be matched exactly

for the rule to apply. This way, we were able to cover “put cyan on red blocks” in (3.1) without

having needing a rule like R6”.

Rule Semantics Description

Set! Set not(s) (R4) all stacks except those in s

‘not’ Set! Set not(s) (R4’) all stacks except those in s

Set Color! Act add(s,c) (R6) add block with color c to set s

‘add’ Color ‘to’ Set! Act add(s,c) (R6’) add block with color c to set s

‘put’ Color ‘on’ Set! Act add(s,c) (R6”) add block with color c to set s

While this relaxation may seem linguistically blasphemous, recall that the purpose of the gram-

mar is to merely deliver a set of logical forms, so floating rules are quite sensible provided we can

keep the set of logical forms under control. Of course, since the grammar is so flexible, even more

nonsensical logical forms are generated, so we must lean heavily on the features to score the deriva-

tions properly. When the logical forms are simple and we have strong type constraints, this strategy

can be quite effective (Berant and Liang, 2014; Wang et al., 2015; Pasupat and Liang, 2015).
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3.3.3 Learning

In learning, we are given examples of utterance-context-response triples (x,c,y). There are two

aspects of learning: inducing the grammar rules and estimating the model parameters. It is important

to remember that practical semantic parsers do not do everything from scratch, and often the hard-

coded grammar rules are as important as the training examples. First, some lexical rules that map

named entities (e.g., [paris ) ParisFrance]), dates, and numbers are generally assumed to be

given (Zettlemoyer and Collins, 2005), though we need not assume that these rules are perfect

(Liang et al., 2011). These rules are also often represented implicitly (Liang et al., 2011; Berant

et al., 2013).

Grammar induction

How the rest of the grammar is handled varies across approaches. In CCG-style approach, inducing

lexical rules is an important part of learning. In Zettlemoyer and Collins (2005), a procedure called

GENLEX is used to generate candidate lexical rules from a utterance-logical form pair (x,z). A

more generic induction algorithm based on higher-order unification does not require any initial

grammar (Kwiatkowski et al., 2010). (Wong and Mooney, 2007) use machine translation ideas to

induce a synchronous grammar (which can also be used to generate utterances from logical forms).

Grammar induction handles most of learning in Chapter 5 where high-precision rules are induced

from user definitions.

In approaches that learn from denotations y (Liang et al., 2011; Berant et al., 2013; Pasupat and

Liang, 2015), an initial crude grammar is used to generate candidate logical forms, and rest of the

work is done by the features. This approach is used in Chapter 4.

Parameter learning

As we discussed earlier, parameter estimation can be performed by stochastic gradient descent on

the log-likelihood; similar objectives based on max-margin are also possible (Liang and Potts,

2015). It can be helpful to also add an L
1

regularization term lkqk
1

, which encourages feature

weights to be zero, which produces a more compact model that generalizes better (Berant and

Liang, 2014). In addition, one can use AdaGrad (Duchi et al., 2010), which maintains a separate

step size for each feature. This can improve stability and convergence.
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Discussion

Chapter 5 uses a starting programming language that allows users to define complex actions that

cannot be handled by a floating grammar. This is because 10-100 rule applications are needed

to reach one of these actions, and beam search will never find them. As a result, learning via

grammar induction does the heavy lifting in Chapter 5 while parameter learning plays a supportive

role. In contrast, lexical rules would not be flexible enough to handle the arbitrary language used in

Chapter 4. Here, parameter learning with a floating grammar does the heavy lifting, and allowed us

to learn starting from scratch. In general, learning via grammar induction and parameter learning

complement each other.



Chapter 4

Learning language games through
interaction

This chapter is based on (Wang et al., 2016), where the goal is to study a setting where learning

starts from scratch and tailored to each user. It is inspired by Wittgenstein’s language games: a hu-

man wishes to accomplish some task (e.g., achieving a certain configuration of blocks), but can only

communicate with a computer, who performs the actual actions (e.g., removing all red blocks). The

computer initially knows nothing about language and therefore must learn it from scratch through

interaction, while the human adapts to the computer’s capabilities. We created a game called SHRD-

LURN in a blocks world and collected interactions from 100 people playing it. First, we analyze

the humans’ strategies, showing that using compositionality and avoiding synonyms correlates pos-

itively with task performance. Second, we compare computer strategies, showing that modeling

pragmatics on a semantic parsing model accelerates learning for more strategic players.

4.1 Introduction

Wittgenstein (1953) famously said that language derives its meaning from use, and introduced the

concept of language games to illustrate the fluidity and purpose-orientedness of language. He de-

scribed how a builder B and an assistant A can use a primitive language consisting of four words—

‘block’, ‘pillar’, ‘slab’, ‘beam’—to successfully communicate what block to pass from A to B. This

is only one such language; many others would also work for accomplishing the cooperative goal.

“2....Let us imagine a language ...The language is meant to serve for communication

36
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Figure 4.1: The SHRDLURN game: In this collaborative game between the human and the com-

puter, the objective is to transform the start state into the goal state. The human types in an utterance,

and the computer (which does not know the goal state) tries to interpret the utterance and perform

the corresponding action. The computer initially knows nothing about the language, but through the

human’s feedback, learns the human’s language while making progress towards the game goal.

(Wittgenstein, 1953)

between a builder A and an assistant B. A is building with building-stones; there are

blocks, pillars, slabs and beams. B has to pass the stones, and that in the order in which

A needs them. For this purpose they use a language consisting of the words ’block’,

’pillar’, ’slab’, ’beam’. A calls them out; –B brings the stone which he has learnt to

bring at such-and-such a call. – Conceive of this as a complete primitive language.”

This chapter operationalizes and explores the idea of language games in a learning setting, which

we call interactive learning through language games (ILLG). In the ILLG setting, the two parties do

not initially speak a common language, but nonetheless need to collaboratively accomplish a goal.

Specifically, we created a game called SHRDLURN,

1

in homage to the seminal work of Winograd

(1972). As shown in Figure 4.1, the objective is to transform a start state into a goal state, but the

only action the human can take is entering an utterance. The computer parses the utterance and

produces a ranked list of possible interpretations according to its current model. The human scrolls

through the list and chooses the intended one, simultaneously advancing the state of the blocks and

providing feedback to the computer. Both the human and the computer wish to reach the goal state

1

Demo: http://shrdlurn.sidaw.xyz

http://shrdlurn.sidaw.xyz
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remove red remove red

add(leftmost(hascolor(red)),red)

add(red, hascolor(cyan))

remove(hascolor(red))

remove(leftmost(hascolor(red)))

remove red

add(leftmost(hascolor(red)),red)

add(red, hascolor(cyan))

remove(hascolor(red))

remove(leftmost(hascolor(red)))

Figure 4.2: left: the human user produces an utterance, middle: the computer responds with a

ranked list of actions, right: the human selects the desired action.

(only known to the human) with as little scrolling as possible. For the computer to be successful,

it has to learn the human’s language quickly over the course of the game, so that the human can

accomplish the goal more efficiently. Conversely, the human must also accommodate the computer,

at least partially understanding what it can and cannot do.

We model the computer in the ILLG as a semantic parser (Section 4.3), which maps natural lan-

guage utterances (e.g., ‘remove red’) into logical forms (e.g., remove(with(red))). The semantic

parser has no seed lexicon and no annotated logical forms, so it just generates many candidate log-

ical forms. Based on the human’s feedback, it performs online gradient updates on the parameters

corresponding to simple lexical features.

During development, it became evident that while the computer was eventually able to learn

the language, it was learning less quickly than one might hope. For example, after learning that

‘remove red’ maps to remove(with(red)), it would think that ‘remove cyan’ also mapped to

remove(with(red)), whereas a human would likely use mutual exclusivity to rule out that hy-

pothesis (Markman and Wachtel, 1988). We therefore introduce a pragmatics model in which the

computer explicitly reasons about the human, in the spirit of previous work on pragmatics (Golland

et al., 2010; Frank and Goodman, 2012; Smith et al., 2013). To make the model suitable for our

ILLG setting, we introduce a new online learning algorithm. Empirically, we show that our prag-

matic model improves the online accuracy by 8% compared to our best non-pragmatic model on the

10 most successful players (Section 4.5.3).

What is special about the ILLG setting is the real-time nature of learning, in which the human
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also learns and adapts to the computer. While the human can teach the computer any language—

English, Arabic, Polish, a custom programming language—a good human player will choose to

use utterances that the computer is more likely to learn quickly. In the parlance of communication

theory, the human accommodates the computer (Giles, 2008; Ireland et al., 2011). Using Amazon

Mechanical Turk, we collected and analyzed around 10k utterances from 100 games of SHRD-

LURN. We show that successful players tend to use compositional utterances with a consistent

vocabulary and syntax, which matches the inductive biases of the computer (Section 4.5.2). In ad-

dition, through this interaction, many players adapt to the computer by becoming more consistent,

more precise, and more concise.

On the practical side, natural language systems are often trained once and deployed, and users

must live with their imperfections. We believe that studying the ILLG setting will be integral for cre-

ating adaptive and customizable systems, especially for resource-poor languages and new domains

where starting from close to scratch is unavoidable.

4.2 Setting

We now describe the interactive learning of language games (ILLG) setting formally. There are two

players, the human and the computer. The game proceeds through a fixed number of levels. In each

level, both players are presented with a starting state s 2 Y , but only the human sees the goal state

t 2 Y . (e.g. in SHRDLURN, Y is the set of all configurations of blocks). The human transmits

an utterance x (e.g., ‘remove red’) to the computer. The computer then constructs a ranked list of

candidate actions Z = [z
1

, . . . ,zK ] ✓ Z (e.g., remove(with(red)), add(with(orange)), etc.),

where Z is all possible actions. For each zi 2 Z, it computes yi = JziKs, the successor state from

executing action zi on state s. The computer returns to the human the ordered list Y = [y
1

, . . . ,yK ]

of successor states. The human then chooses yi from the list Y (we say the computer is correct if

i = 1). The state then updates to s = yi. The level ends when s = t, and the players advance to the

next level.

Since only the human knows the goal state t and only the computer can perform actions, the

only way for the two to play the game successfully is for the human to somehow encode the desired

action in the utterance x. However, we assume the two players do not have a shared language, so

the human needs to pick a language and teach it to the computer. As an additional twist, the human

does not know the exact set of actions Z (although they might have some preconception of the
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add(hascolor(red), cyan)

remove(rightmost(all()))

remove(rightmost(hascolor(orange)))

Figure 4.3: several different actions z might all produce the same state s

computer’s capabilities).

2

Finally, the human only sees the outcomes of the computer’s actions,

which might be consistent with multiple actions For example, in Figure 4.3, ‘remove the leftmost’

happens to be the same as ‘remove the leftmost orange’.

We expect the game to proceed as follows: In the beginning, the computer does not understand

what the human is saying and performs arbitrary actions. As the computer obtains feedback and

learns, the two should become more proficient at communicating and thus playing the game. Herein

lies our key design principle: language learning should be necessary for the players to achieve good

game performance.

In order to do well in this game, the player has to choose what to say, and what to accept as

correct. If an example is too hard, the player can also choose to skip it and play a new one. For the

simpler levels, one action can be sufficient to reach the goal, but multiple actions is allowed as well,

as in Figure 4.1. The game score is based on the number of extra inspections that the player has to

make. In particular, the best score is obtained if the computer performs the right action in its first

attempt.

4.2.1 SHRDLURN

We explore this setting through a cooperative game called SHRDLURN where our objective is to

obtain a particular set of blocks in the goal state. Only the human knows what the goal is, and only

the computer can manipulate the blocks. So the way to finish this game is for the human player to

teach the computer to understand a language, and it would also help if the player tries to figure out,

2

This is often the case when we try to interact with a new software system or service before reading the manual.
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Rule Semantics Description
Set all() all stacks

Color cyan|brown|red|orange primitive color

Color! Set with(c) stacks whose top block has color c
Set! Set not(s) all stacks except those in s
Set! Set leftmost|rightmost(s) leftmost/rightmost stack in s
Set Color! Act add(s,c) add block with color c on each stack in s
Set! Act remove(s) remove the topmost block of each stack in s

Table 4.1: The formal grammar defining the compositional action space Z for SHRDLURN.

We use c to denote a Color, and s to denote a Set. For example, one action that we

have in SHRDLURN is: ‘add an orange block to all but the leftmost brown block’ 7!
add(not(leftmost(with(brown))),orange).

at least approximately, what the computer is capable of.Figure 4.1

To make progress, the player first think about which action z needs to be taken in order to

reach goal state, then he types an utterance x. The computer ranks actions according to the player

utterance, and show the player the resulting blocks y by performing each action z on the starting

state s. The player then inspects these outcome blocks y in order of model likelihood, and tells the

computer what is the correct outcome he has in mind.

Let us now describe the details of our specific game, SHRDLURN. Each state s 2 Y consists

of stacks of colored blocks arranged in a line (Figure 4.1), where each stack is a vertical column of

blocks. The actions Z are defined compositionally via the grammar in Table 4.1. Each action either

adds to or removes from a set of stacks, and a set of stacks is computed via various set operations

and selecting by color. For example, the action remove(leftmost(with(red))) removes the top

block from the leftmost stack whose topmost block is red. The compositionality of the actions gives

the computer non-trivial capabilities. Of course, the human must teach a language to harness those

capabilities, while not quite knowing the exact extent of the capabilities. The actual game proceeds

according to a curriculum, where the earlier levels only need simpler actions with fewer predicates.

We designed SHRDLURN in this way for several reasons. First, visual block manipulations are

intuitive and can be easily crowdsourced, and it can be fun as an actual game that people would

play. Second, the action space is designed to be compositional, mirroring the structure of natural

language. Third, many actions z lead to the same successor state y = JzKs; e.g., the ‘leftmost stack’

might coincide with the ‘stack with red blocks’ for some state s and therefore an action involving

either one would result in the same outcome. Since the human only points out the correct y, the

computer must grapple with this indirect supervision, a reflection of real language learning. For
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the computer to be successful, it has to extrapolate to many unseen commands from less than 100

examples and learn interactively. The task is impossible without compositionality and models that

can take advantage of it.

4.3 Semantic parsing model

Following Zettlemoyer and Collins (2005) and most recent work on semantic parsing, we use a

log-linear model over logical forms (actions) z 2Z given an utterance x:

pq (z | x) µ exp(qTf(x,z)), (4.1)

where f(x,z)2Rd
is a feature vector and q 2Rd

is a parameter vector. The denotation y (successor

state) is obtained by executing z on a state s; formally, y = JzKs.

Features. Our features are n-grams (including skip-grams) conjoined with tree-grams on the log-

ical form side. Specifically, on the utterance side (e.g., ‘stack red on orange’), we use unigrams

(‘stack’, *, *), bigrams (‘red’, ‘on’, *), trigrams (‘red’, ‘on’, ‘orange’), and skip-trigrams (‘stack’,

*, ‘on’). On the logical form side, features corresponds to the predicates in the logical forms and

their arguments. For each predicate h, let h.i be the i-th argument of h. Then, we define tree-gram

features y(h,d) for predicate h and depth d = 0,1,2,3 recursively as follows:

y(h,0) = {h},

y(h,d) = {(h, i,y(h.i,d�1)) | i = 1,2,3}.

The set of all features is just the cross product of utterance features and logical form features. For

example, if x = ‘enlever tout’ and z = remove(all()), then features include:

(‘enlever’,all) (‘tout’,all)
(‘enlever’,remove) (‘tout’,remove)
(‘enlever’,(remove,1,all))

(‘tout’,(remove,1,all))

Note that we do not model an explicit alignment or derivation compositionally connecting the

utterance and the logical form, in contrast to most traditional work in semantic parsing (Zettlemoyer

and Collins, 2005; Wong and Mooney, 2007; Liang et al., 2011; Kwiatkowski et al., 2010; Berant

et al., 2013), instead following a looser model of semantics similar to (Pasupat and Liang, 2015).
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leftmost

hascolor

red

orange

1 2

m
put orange on the very left red block

uni-, bi-, skip- grams on x

put, orange, on, the

put orange, orange on, ...,

put * on, orange * the, ...,

tree-grams on z

add(leftmost(*), orange)

leftmost(hascolor(*))

�c.(hascolor(c))

cross product features

(put ,add(*,*))

(put orange,add(*,orange))

(put ,orange)

Figure 4.4: an illustration of the cross product features

brown

hascolor(brown)

leftmost(hascolor(brown))

di↵(all(),leftmost(hascolor(brown))

remove(di↵(all(),leftmost(hascolor(brown)))

Figure 4.5: search over logical forms in increasing length

Modeling explicit alignments or derivations is only computationally feasible when we are learning

from annotated logical forms or have a seed lexicon, since the number of derivations is much larger

than the number of logical forms. In the ILLG setting, neither are available. Therefore, we follow

Pasupat and Liang (2015) and define features on the cross product of utterance and logical forms

and hope that the spurious features such as (‘enlever’,all) will be downweighted with sufficient

examples.

Generation/parsing. We generate logical forms from smallest to largest using beam search. sim-

ilar to the floating parser of Pasupat and Liang (2015). Specifically, for each size n = 1, . . . ,8, we

construct a set of logical forms of size n (with exactly n predicates) by combining logical forms

of smaller sizes according to the grammar rules in Table 4.1. For each n, we keep the 100 logical

forms z with the highest score qTf(x,z) according to the current model q . Let Z be the set of logical

forms on the final beam, which contains logical forms of all sizes n. During training, due to pruning

at intermediate sizes, Z is not guaranteed to contain the logical form that obtains the observed state
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y. To mitigate this effect, we use a curriculum so that only simple actions are needed in the initial

levels, giving the human an opportunity to teach the computer about basic terms such as colors first

before moving to larger composite actions.

The system executes all of the logical forms on the final beam Z, and orders the resulting deno-

tations y by the maximum probability of any logical form that produced it.

3

Learning. When the human provides feedback in the form of a particular y, the system forms the

following loss function:

`(q ,x,y) =� log pq (y | x,s)+l ||q ||
1

, (4.2)

pq (y | x,s) = Â
z:JzKs=y

pq (z | x). (4.3)

Then it makes a single gradient update using AdaGrad (Duchi et al., 2010), which maintains a

per-feature step size.

4.4 Modeling pragmatics

In our initial experience with the semantic parsing model described in Section 4.3, we found that it

was able to learn reasonably well, but lacked a reasoning ability that one finds in human learners. To

illustrate the point, consider the beginning of a game when q = 0 in the log-linear model pq (z | x).

Suppose that human utters ‘remove red’ and then identifies zrm-red = remove(with(red)) as the

correct logical form. The computer then performs a gradient update on the loss function (4.2),

upweighting features such as (‘remove’,remove) and (‘remove’,red).

Next, suppose the human utters ‘remove cyan’. Note that zrm-red will score higher than all other

formulas since the (‘remove’,red) feature will fire again. While statistically justified, this behavior

fails to meet our intuitive expectations for a smart language learner. Moreover, this behavior is not

specific to our model, but applies to any statistical model that simply tries to fit the data without

additional prior knowledge about the specific language. While we would not expect the computer to

magically guess ‘remove cyan’ 7! remove(with(cyan)), it should at least push down the probability

of zrm-red because zrm-red intuitively is already well-explained by another utterance ‘remove red’.
3

We tried ordering based on the sum of the probabilities (which corresponds to marginalizing out the logical form),

but this had the degenerate effect of assigning too much probability mass to y being the set of empty stacks, which can

result from many actions.
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zrm-red zrm-cyan z
3

,z
4

, . . .
pq (z | x)

‘remove red’ 0.8 0.1 0.1

‘remove cyan’ 0.6 0.2 0.2

S(x | z)
‘remove red’ 0.57 0.33 0.33

‘remove cyan’ 0.43 0.67 0.67

L(z | x)
‘remove red’ 0.46 0.27 0.27

‘remove cyan’ 0.24 0.38 0.38
Table 4.2: Example. Suppose the computer saw one example of ‘remove red’ 7!zrm-red, and then

the human utters ‘remove cyan’. top: the literal listener, pq (z | x), mistakingly chooses zrm-red
over zrm-cyan. middle: the pragmatic speaker, S(x | z), assigns a higher probability to to ‘remove
cyan’ given zrm-cyan; bottom: the pragmatic listener, L(z | x) correctly assigns a lower probability

to zrm-red where p(z) is uniform.

This phenomenon, mutual exclusivity, was studied by Markman and Wachtel (1988). They

found that children, during their language acquisition process, reject a second label for an object

and treat it instead as a label for a novel object.

The pragmatic computer. To model mutual exclusivity formally, we turn to probabilistic models

of pragmatics (Golland et al., 2010; Frank and Goodman, 2012; Smith et al., 2013; Goodman and

Lassiter, 2015), which operationalize the ideas of Grice (1975). The central idea in these models

is to treat language as a cooperative game between a speaker (human) and a listener (computer) as

we are doing, but where the listener has an explicit model of the speaker’s strategy, which in turn

models the listener. Formally, let S(x | z) be the speaker’s strategy and L(z | x) be the listener’s

strategy. The speaker takes into account the literal semantic parsing model pq (z | x) as well as a

prior over utterances p(x), while the listener considers the speaker S(x | z) and a prior p(z):

S(x | z) µ (pq (z | x)p(x))b , (4.4)

L(z | x) µ S(x | z)p(z), (4.5)

where b � 1 is a hyperparameter that sharpens the distribution (Smith et al., 2013). The computer

would then use L(z | x) to rank candidates rather than pq . Note that our pragmatic model only

affects the ranking of actions returned to the human and does not affect the gradient updates of the

model pq .
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zrm r zadd c zrm c zadd r
score = # features ⇥h

‘remove red’ 6 h 0h 1h 1h
‘add cyan’ 0 h 6h 1h 1h

‘remove cyan’ 3 h 3h 2h 2h
L

0

(z|x) µ exp(s)
‘remove red’ 0.74 0.06 0.10 0.10

‘add cyan’ 0.06 0.74 0.10 0.10

‘remove cyan’ 0.3 0.3 0.2 0.2

S
1

(x|z)
‘remove red’ 0.67 0.06 0.25 0.25

‘add cyan’ 0.06 0.67 0.25 0.25

‘remove cyan’ 0.27 0.27 0.5 0.5

Table 4.3: Example. Suppose the computer observed the two examples above the dashed line, and

did a batch update with a learning rate of h = log(3/2), and for simplicity we used p(z|x;q = 0)⇡ 0.

The features used are unigrams in the utterance matched with unigrams and bigrams of predicates.

So we get 6 features with non-zero weights for u = ‘remove’, ‘red’, we get u 7!Red, u 7!remove,

and u 7!remove,1,Red. top: the score for each utterance after the first update, mid: probabilities

assigned by the literal listener L
0

(z|x), bot: the pragmatic speaker.

Let us walk through a simple example to see the effect of modeling pragmatics. Table 4.2

shows that the literal listener pq (z | x) assigns high probability to zrm-red for both ‘remove red’ and

‘remove cyan’. Assuming a uniform p(x) and b = 1, the pragmatic speaker S(x | z) corresponds

to normalizing each column of pq . Note that if the pragmatic speaker wanted to convey zrm-cyan,

there is a decent chance that they would favor ‘remove cyan’. Next, assuming a uniform p(z),

the pragmatic listener L(z | x) corresponds to normalizing each row of S(x | z). The result is that

conditioned on ‘remove cyan’, zrm-cyan is now more likely than zrm-red, which is the desired effect.

Table 4.3 show another example, where we consider a specific features and the third utterance.

The pragmatic listener models the speaker as a cooperative agent who behaves in a way to

maximize communicative success. Certain speaker behaviors such as avoiding synonyms (e.g., not

‘delete cardinal’) and using a consistent word ordering (e.g, not ‘red remove’) fall out of the game

theory.

4

For speakers that do not follow this strategy, our pragmatic model is incorrect, but as we

get more data through game play, the literal listener pq (z | x) will sharpen, so that the literal listener

and the pragmatic listener will coincide in the limit.

4

Of course, synonyms and variable word order occur in real language. We would need a more complex game

compared to SHRDLURN to capture this effect.
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8z,C(z) 0

8z,Q(z) e
repeat

receive utterance x from human L(z | x) µ P(z)
Q(z) pq (z | x)b

send human a list Y ranked by L(z | x)

receive y 2 Y from human

q  q �h—q `(q ,x,y)
Q(z) Q(z)+ pq (z | x)b

C(z) C(z)+ pq (z | x,JzKs = y)
P(z) C(z)+a

Âz0:C(z0)>0

�
C(z0)+a

�

until game ends

Algorithm 1: Online learning algorithm that updates the parameters of the semantic parser q
as well as counts C,Q required to perform pragmatic reasoning.

Online learning with pragmatics. To implement the pragmatic listener as defined in (4.5), we

need to compute the speaker’s normalization constant Âx pq (z | x)p(x) in order to compute S(x | z)

in (4.4). This requires parsing all utterances x based on pq (z | x). To avoid this heavy computation

in an online setting, we propose Algorithm 1, where some approximations are used for the sake of

efficiency. First, to approximate the intractable sum over all utterances x, we only use the examples

that are seen to compute the normalization constant Âx pq (z | x)p(x)⇡ Âi pq (z | xi). Then, in order

to avoid parsing all previous examples again using the current parameters for each new example, we

store Q(z) = Âi pqi(z | xi)b
, where qi is the parameter after the model updates on the ith example xi.

While qi is different from the current parameter q , pq (z | xi) ⇡ pqi(z | xi) for the relevant example

xi, which is accounted for by both qi and q .

In Algorithm 1, the pragmatic listener L(z | x) can be interpreted as an importance-weighted

version of the sharpened literal listener pb
q , where it is downweighted by Q(z), which reflects which

z’s the literal listener prefers, and upweighted by P(z), which is just a smoothed estimate of the

actual distribution over logical forms p(z). By construction, Algorithm 1 is the same as (4.4) except

that it uses the normalization constant Q based on stale parameters qi after seeing example, and it

uses samples to compute the sum over x. Following (4.5), we also need p(z), which is estimated

by P(z) using add-a smoothing on the counts C(z). Note that Q(z) and C(z) are updated after the

model parameters are updated for the current example.

Lastly, there is a small complication due to only observing the denotation y and not the logical

form z. We simply give each consistent logical form {z | JzKs = y} a pseudocount based on the
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model: C(z) C(z)+ pq (z | x,JzKs = y) where pq (z | x,JzKs = y) µ exp(qTf(x,z)) for JzKs = y (0

otherwise).

Compared to prior work where the setting is specifically designed to require pragmatic infer-

ence, pragmatics arises naturally in ILLG. We think that this form of pragmatics is the most im-

portant during learning, and becomes less important if we had more data. Indeed, if we have a lot

of data and a small number of possible zs, then L(z|x) ⇡ pq (z|x) as Âx pq (z|x)p(x)! p(z) when

b = 1.

5

However, for semantic parsing, we would not be in this regime even if we have a large

amount of training data. In particular, we are nowhere near that regime in SHRDLURN, and most

of our utterances / logical forms are seen only once, and the importance of modeling pragmatics

remains.

4.5 Experiments

4.5.1 Setting

Data. Using Amazon Mechanical Turk (AMT), we paid 100 workers 3 dollars each to play SHRD-

LURN. In total, we have 10223 utterances along with their starting states s. Of these, 8874 utter-

ances are labeled with their denotations y; the rest are unlabeled, since the player can try any utter-

ance without accepting an action. 100 players completed the entire game under identical settings.

We deliberately chose to start from scratch for every worker, so that we can study the diversity of

strategies that different people used in a controlled setting.

Each game consists of 50 blocks tasks divided into 5 levels of 10 tasks each, in increasing

complexity. Each level aims to reach an end goal given a start state. Each game took on average 89

utterances to complete.

6

It only took 6 hours to complete these 100 games on AMT and each game

took around an hour on average according to AMT’s work time tracker (which does not account

for multi-tasking players). The players were provided minimal instructions on the game controls.

Importantly, we gave no example utterances in order to avoid biasing their language use. Around

20 players were confused and told us that the instructions were not clear and gave us mostly spam

utterances. Fortunately, most players understood the setting and some even enjoyed SHRDLURN

as reflected by their optional comments:

• That was probably the most fun thing I have ever done on mTurk.
5

Technically, we also need pq to be well-specified.

6

This number is not 50 because some block tasks need multiple steps and players are also allowed to explore without

reaching the goal.
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• Wow this was one mind bending games [sic].

• This is SO SO cool. I wish there were a way I could better contribute because this research

seems to be just insanely interesting and worthwhile.

• That was very fun, please email me if you have any other hits like this in the future :)

Metrics. We use the number of scrolls as a measure of game performance for each player. For

each example, the number of scrolls is the position in the list Y of the action selected by the player.

It was possible to complete this version of SHRDLURN by scrolling (all actions can be found in

the first 125 of Y )—22 of the 100 players failed to teach an actual language, and instead finished the

game mostly by scrolling. Let us call them spam players, who usually typed single letters, random

words, digits, or random phrases (e.g. ‘how are you’). Overall, spam players had to scroll a lot:

21.6 scrolls per utterance versus only 7.4 for the non-spam players.

4.5.2 Human strategies

Some example utterances can be found in Table 4.4. Most of the players used English, but vary

in their adherence to conventions such as use of determiners, plurals, and proper word ordering. 5

players invented their own language, which are more precise, more consistent than general English.

One player used Polish, and another used Polish notation (bottom of Table 4.4).

Overall, we find that many players adapt in ILLG by becoming more consistent, less verbose,

and more precise, even if they used standard English at the beginning. For example, some players

became more consistent over time (e.g. from using both ‘remove’ and ‘discard’ to only using

‘remove’). In terms of verbosity, removing function words like determiners as the game progresses

is a common adaptation. In each of the following examples from different players, we compare an

utterance that appeared early in the game to a similar utterance that appeared later: ‘Remove the

red ones’ became ‘Remove red.’; ‘add brown on top of red’ became ‘add orange on red’; ‘add red

blocks to all red blocks’ became ‘add red to red’; ‘dark red’ became ‘red’; one player used ‘the’ in

all of the first 20 utterances, and then never used ‘the’ in the last 75 utterances.

Players also vary in precision, ranging from overspecified (e.g. ‘remove the orange cube at the

left’, ‘remove red blocks from top row’) to underspecified or requiring context (e.g. ‘change colors’,

‘add one blue’, ‘Build more blocus’, ‘Move the blocks fool’,‘Add two red cubes’). We found that

some players became more precise over time, as they gain a better understanding of ILLG.

Most players use utterances that actually do not match our logical language in Table 4.1, even

the successful players. In particular, numbers are often used. While some concepts always have
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Most successful players (1st–20th)

rem cy pos 1, stack or blk pos 4,

rem blk pos 2 thru 5, rem blk pos 2

thru 4, stack bn blk pos 1 thru 2, fill

bn blk, stack or blk pos 2 thru 6,

rem cy blk pos 2 fill rd blk (3.01)

remove the brown block, remove all

orange blocks, put brown block on

orange blocks, put orange blocks on

all blocks, put blue block on

leftmost blue block in top row

(2.78)

Remove the center block, Remove

the red block, Remove all red

blocks, Remove the first orange

block, Put a brown block on the

first brown block, Add blue block

on first blue block (2.72)

Average players (21th–50th)

reinsert pink, take brown, put in

pink, remove two pink from second

layer, Add two red to second layer

in odd intervals, Add five pink to

second layer, Remove one blue and

one brown from bottom layer (9.17)

remove red, remove 1 red, remove 2

4 orange, add 2 red, add 1 2 3 4

blue, emove 1 3 5 orange, add 2 4

orange, add 2 orange, remove 2 3

brown, add 1 2 3 4 5 red, remove 2

3 4 5 6, remove 2, add 1 2 3 4 6 red

(8.37)

move second cube, double red with

blue, double first red with red, triple

second and fourth with orange, add

red, remove orange on row two, add

blue to column two, add brown on

first and third (7.18)

Least successful players (51th–)

holdleftmost, holdbrown,

holdleftmost, blueonblue,

brownonblue1, blueonorange,

holdblue, holdorange2, blueonred2

, holdends1, holdrightend, hold2,

orangeonorangerightmost (14.15)

‘add red cubes on center left, center

right, far left and far right’, ‘remove

blue blocks on row two column

two, row two column four’, remove

red blocks in center left and center

right on second row (12.6)

laugh with me, red blocks with one

aqua, aqua red alternate, brown red

red orange aqua orange, red brown

red brown red brown, space red

orange red, second level red space

red space red space (14.32)

Spam players (⇠ 85th–100)

next, hello happy, how are you, move, gold, build goal blocks, 23,house, x, run, xav, d, j, xcv, dulicate goal (21.7)

Most interesting

usu´n brązowe klocki, postaw

pomara´nczowy klocek na

pierwszym klocku, postaw

czerwone klocki na

pomara´nczowych, usu´n

pomara´nczowe klocki w górnym

rzędzie

rm scat + 1 c, + 1 c, rm sh, + 1 2 4

sh, + 1 c, - 4 o, rm 1 r, + 1 3 o, full

fill c, rm o, full fill sh, - 1 3, full fill

sh, rm sh, rm r, + 2 3 r, rm o, + 3 sh,

+ 2 3 sh, rm b, - 1 o, + 2 c,

mBROWN,mBLUE,mORANGE

RED+ORANGEˆORANGE,

BROWN+BROWNm1+BROWNm3,

ORANGE +BROWN

+ORANGEˆm1+ ORANGEˆm3 +

BROWNˆˆ2 + BROWNˆˆ4

Table 4.4: Example utterances, along with the average number of scrolls for that player in paren-

theses. Success is measured by the number of scrolls, where the more successful players need less

scrolls. 1) The 20 most successful players tend to use consistent and concise language whose se-

mantics is similar to our logical language. 2) Average players tend to be slightly more verbose and

inconsistent (left and right), or significantly different from our logical langauge (middle). 3) Rea-

sons for being unsuccessful vary. Left: no tokenization, middle: used a coordinate system and many

conjunctions; right: confused in the beginning, and used a language very different from our logical

language.
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the same effect in our blocks world (e.g. ‘first block’ means leftmost), most are different. More

concretely, of the top 10 players, 7 used numbers of some form and only 3 players matched our

logical language. Some players who did not match the logical language performed quite well nev-

ertheless. One possible explanation is because the action required is somewhat constrained by the

logical language and some tokens can have unintended interpretations. For example, the computer

can correctly interpret numerical positional references, as long as the player only refers to the left-

most and rightmost positions. So if the player says ‘rem blk pos 4’ and ‘rem blk pos 1’, the computer

can interpret ‘pos’ as rightmost and interpret the bigram (‘pos’, ‘1’) as leftmost. On the other

hand, players who deviated significantly by describing the desired state declaratively (e.g. ‘red or-

ange red’, ‘246’) rather than using actions, or a coordinate system (e.g. ‘row two column two’)

performed poorly. Although players do not have to match our logical language exactly to perform

well, being similar is definitely helpful.

Compositionality. As far as we can tell, all players used a compositional language; no one in-

vented unrelated words for each action. Interestingly, 3 players did not put spaces between words.

Since we assume monomorphemic words separated by spaces, they had to do a lot of scrolling as a

result (e.g., 14.15 with utterances like ‘orangeonorangerightmost’).

Figure 4.6: the number of scrolls needed by token types and token counts.

More quantitatively, we can consider the number of token types used, and the average number

of tokens per utterance. They are somewhat predictive of the game performance as measured by
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number of scrolls. Figure 4.6 shows a very noisy picture of this. We find that players who used

20-40 different token types, and who use utterances of 3-6 tokens long tend to perform better. This

number of token types is comparable to the 12 predicates in Table 4.1 if we account for functional

words and plural forms.

4.5.3 Computer strategies

We now present quantitative results on how quickly the computer can learn, where our goal is to

achieve high accuracy on new utterances as we make just a single pass over the data. The number

of scrolls used to evaluate player is sensitive to outliers and not as intuitive as accuracy. Instead, we

consider online accuracy, described as follows. Formally, if a player produced T utterances x( j)
and

labeled them y( j)
, then

online accuracy

def

=
1

T

T

Â
j=1

I
h
y( j) = Jz( j)Ks( j)

i
,

where z( j) = argmaxz pq ( j�1) (z|x( j)) is the model prediction based on the previous parameter q ( j�1)
.

Note that the online accuracy is defined with respect to the player-reported labels, which only cor-

responds to the actual accuracy if the player is precise and honest. This is not true for most spam

players.

players ranked by # of scrolls

Method top 10 top 20 top 50 all 100

memorize 25.4 24.5 22.5 17.6

half model 38.7 38.4 36.0 27.0

half + prag 43.7 42.7 39.7 29.4

full model 48.6 47.8 44.9 33.3

full + prag 52.8 49.8 45.8 33.8

Table 4.5: Average online accuracy under various settings. memorize: featurize entire utterance and

logical form non-compositionally; half model: featurize the utterances with unigrams, bigrams, and

skip-grams but conjoin with the entire logical form; full model: the model described in Section 4.3;

+prag: the models above, with our online pragmatics algorithm described in Section 4.4. Both

compositionality and pragmatics improve accuracy.

Compositionality. To study the importance of compositionality, we consider two baselines. First,

consider a non-compositional model (memorize) that just remembers pairs of complete utterance

and logical forms. We implement this using indicator features on (x,z), e.g., (‘remove all the red
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(a) (b)

Figure 4.7: Pragmatics improve online accuracy. In these plots, each marker is a player. red o:

players who ranked 1–20 in terms of minimizing number of scrolls, green x: players 20–50; blue +:

lower than 50 (includes spam players). Marker sizes correspond to player rank, where better players

are depicted with larger markers. 4.7a: online accuracies with and without pragmatics on the full

model; 4.7b: same for the half model.

blocks’, zrm-red), and use a large learning rate. We do this because we still need to deal with

denotation labels and conflicting player labels even if we just want to memorize examples. Second,

we consider a model (half ) that treats utterances compositionally with unigrams, bigrams, and skip-

trigrams features, but the logical forms are regarded as non-compositional, so we have features such

as (‘remove’,zrm-red), (‘red’,zrm-red), etc.

Our full model has double the online accuracy compared to memorization (Table 4.5).

Table 4.5 shows that the full model (Section 4.3) significantly outperforms both the memorize

and half baselines. The learning rate h = 0.1 is selected via cross validation, and we used a = 1

Memorize

(all)

Half-model

(all)

Full-model

(all)

Full-model

(top 10)
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33.3

33.8
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Figure 4.8: left: comparison with baselines, right: pragmatics help top players
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and b = 3 following Smith et al. (2013).

Pragmatics. Next, we study the effect of pragmatics on online accuracy. Figure 4.7 shows that

modeling pragmatics helps successful players (e.g., top 10 by number of scrolls) who use precise

and consistent languages. Interestingly, our pragmatics model did not help and can even hurt the less

successful players who are less precise and consistent. This is expected behavior: the pragmatics

model assumes that the human is cooperative and behaving rationally. For the bottom half of the

players, this assumption is not true, in which case the pragmatics model is not useful.

4.6 Related Work and Discussion

Our work connects with a broad body of work on grounded language, in which language is used

in some environment as a means towards some goal. Examples include playing games (Branavan

et al., 2009, 2010; Reckman et al., 2010) interacting with robotics (Tellex et al., 2011, 2014), and

following instructions (Vogel and Jurafsky, 2010; Chen and Mooney, 2011; Artzi and Zettlemoyer,

2013) Semantic parsing utterances to logical forms, which we leverage, plays an important role in

these settings (Kollar et al., 2010; Matuszek et al., 2012; Artzi and Zettlemoyer, 2013).

What makes this work unique is our new interactive learning of language games (ILLG) setting,

in which a model has to learn a language from scratch through interaction. While online gradient

descent is frequently used, for example in semantic parsing (Zettlemoyer and Collins, 2007; Chen,

2012), we using it in a truly online setting, taking one pass over the data and measuring online

accuracy (Cesa-Bianchi and Lugosi, 2006).

To speed up learning, we leverage computational models of pragmatics (Jäger, 2008; Golland

et al., 2010; Frank and Goodman, 2012; Smith et al., 2013; Vogel et al., 2013). The main difference

is these previous works use pragmatics with a trained base model, whereas we learn the model

online. Monroe and Potts (2015) uses learning to improve the pragmatics model. In contrast, we

use pragmatics to speed up the learning process by capturing phenomena like mutual exclusivity

(Markman and Wachtel, 1988). We also differ from prior work in several details. First, we model

pragmatics in the online learning setting where we use an online update for the pragmatics model.

Second, unlikely the reference games where pragmatic effects plays an important role by design,

SHRDLURN is not specifically designed to require pragmatics. The improvement we get is mainly

due to players trying to be consistent in their language use. Finally, we treat both the utterance

and the logical forms as featurized compositional objects. Smith et al. (2013) treats utterances (i.e.
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words) and logical forms (i.e. objects) as categories; Monroe and Potts (2015) used features, but also

over flat categories; (Goodman and Lassiter, 2015) used pragmatics with compositional semantics.

Looking forward, we believe that the ILLG setting is worth studying and has important implica-

tions for natural language interfaces. Today, these systems are trained once and deployed. If these

systems could quickly adapt to user feedback in real-time as in this work, then we might be able to

more readily create systems for resource-poor languages and new domains, that are customizable

and improve through use.

4.7 Appendix

In the year following the initial release, the online demo of SHRDLURN received 26k+ examples

in 1599 sessions through 130k interactions. We show some examples from these, divided into

English-like, code-like, and other languages.

English-like

(1) add brown on the top unless the rightmost

(2) add a brown block on top of the right-most red block

(3) move all blocks but middle

(4) Not the brown block!

(5) add red on top of first brown,

(6) add blue blocks on top of left 3 blocks

(7) drop orange 1

(8) drop orange not left not right

Code-like languages

(1) add blo 1 bro

(2) - 1 br - 4 br - 6 br

(3) lift 1 3 5

(4) + 1 2 3 4 5 r

(5) Add x x o x o x red block
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(6) rem ora blo

(7) add blo 6 pin

(8) add blo 134 bl

(9) + 1 2 3 4 5 r

(10) smaz 1 a 2 a 3 a 5

Other natural languages.

(1) 一番奥にオレンジを置く 
(2) 一番右の赤を消す 
(3) 只保留桔黄色的方块 
(4) 去掉​ ​蓝色​ ​方块 
(5) 在蓝色块上面加一层橙色块 
(6) quita​ ​el​ ​primer​ ​bloque​ ​por​ ​la​ ​derecha 
(7) છોડો   વાદળ�   0   1 
(8) બધા   વાદળ�   �ૂર 
(9) છોડો   નારંગી   1   4 
(10) retire​ ​les ​ ​blocs ​ ​bleus 
(11) quitar​ ​ultimo​ ​cubo​ ​rojop 
(12) ostav​ ​na​ ​kazhdiy​ ​goluboy​ ​blok​ ​vo​ ​vtorom​ ​ryadu​ ​po​ ​korichnevomu​ ​bloku 
 

Reproducibility

All code, data, and experiments for this chapter are available on the CodaLab platform:

https://worksheets.codalab.org/worksheets/0x9fe4d080bac944e9a6bd58478cb05e5e

The client side code is here:

https://github.com/sidaw/shrdlurn/tree/acl16-demo

and a demo: http://shrdlurn.sidaw.xyz

https://worksheets.codalab.org/worksheets/0x9fe4d080bac944e9a6bd58478cb05e5e
https://github.com/sidaw/shrdlurn/tree/acl16-demo
http://shrdlurn.sidaw.xyz


Chapter 5

Naturalizing a programming language
via interactive learning

This chapter is based on Wang et al. (2017), which proposes a more powerful way to learn through

interaction compared to Chapter 4. Due to the exponential growth of the number of logical forms,

learning from selecting alternatives cannot scale well to a more complex action space. One possi-

ble solution is to use richer supervision such as demonstrations or instructions. In particular, we

can start with a usual programming language. This way, the system is always usable—with some

additional user effort learning parts of the language—and we can let users teach the system by pro-

viding definitions in the programming language and existing definitions. Having this programming

language also gives all the users some common ground, in contrast to Chapter 4, where each user

taught the system a private language, the entire user community shares one language in this chapter.

As before, our goal is to create a convenient natural language interface for performing well-

specified but complex actions such as analyzing data, manipulating text, and querying databases.

However, existing natural language interfaces for such tasks are quite primitive compared to the

power one wields with a programming language. To bridge this gap, we start with a core pro-

gramming language and allow users to “naturalize” the core language incrementally by defining

alternative, more natural syntax and increasingly complex concepts in terms of compositions of

simpler ones. In a voxel world, we show that a community of users can simultaneously teach a

common system a diverse language and use it to build hundreds of complex voxel structures. Over

the course of three days, these users went from using only the core language to using the naturalized

language in 85.9% of the last 10K utterances.

57
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5.1 Introduction

In tasks such as analyzing and plotting data (Gulwani and Marron, 2014), querying databases (Zelle

and Mooney, 1996; Berant et al., 2013), manipulating text (Kushman and Barzilay, 2013), or con-

trolling the Internet of Things (Campagna et al., 2017) and robots (Tellex et al., 2011), people need

computers to perform well-specified but complex actions. To accomplish this, one route is to use a

programming language, but this is inaccessible to most and can be tedious even for experts because

the syntax is uncompromising and all statements have to be precise. Another route is to convert

natural language into a formal language, which has been the subject of work in semantic parsing

(Zettlemoyer and Collins, 2005; Artzi and Zettlemoyer, 2011; Liang et al., 2011; Berant et al., 2013;

Artzi and Zettlemoyer, 2013; Pasupat and Liang, 2015). However, the capability of semantic parsers

is still quite primitive compared to the power one wields with a programming language. This gap is

increasingly limiting the potential of both text and voice interfaces as they become more ubiquitous

and desirable.

In this chapter, we propose bridging this gap with an interactive language learning process which

we call naturalization. Before any learning, we seed a system with a core programming language

that is always available to the user. As users instruct the system to perform actions, they augment the

language by defining new utterances—e.g., the user can explicitly tell the computer that X means Y.

Through this process, users gradually and interactively teach the system to understand the language

that they want to use, rather than the core language that they are forced to use initially. While the

first users have to learn the core language, later users can make use of everything that is already

taught. This process accommodates both users’ preferences and the computer action space, where

the final language is both interpretable by the computer and easier to produce by human users.

Compared to the interactive language learning with weak denotational supervision (Chapter 4),

definitions are critical for learning complex actions (Figure 5.1). Definitions equate a novel utter-

ance to a sequence of utterances that the system already understands. For example, go left 6 and

go front might be defined as repeat 6 [go left]; go front, which eventually can be traced back

to the expression repeat 6 [select left of this]; select front of this in the core language. Unlike

function definitions in programming languages, the user writes concrete values rather than explic-

itly declaring arguments. The system automatically extracts arguments and learns to produce the

correct generalizations. For this, we propose a grammar induction algorithm tailored to the learning

from definitions setting. Compared to standard machine learning, say from demonstrations, defini-

tions provide a much more powerful learning signal: the system is told directly that a 3 by 4 red
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square is 3 red columns of height 4, and does not have to infer how to generalize from observing

many structures of different sizes.

We implemented a system called Voxelurn, which is a command language interface for a voxel

world initially equipped with a programming language supporting conditionals, loops, and variable

scoping etc. We recruited 70 users from Amazon Mechanical Turk to build 230 voxel structures

using our system. All users teach the system at once, and what is learned from one user can be used

by another user. Thus a community of users evolves the language to becomes more efficient over

time, in a distributed way, through interaction. We show that the user community defined many new

utterances—short forms, alternative syntax, and also complex concepts such as add green monster,

add yellow plate 3 x 3. As the system learns, users increasingly prefer to use the naturalized

language over the core language: 85.9% of the last 10K accepted utterances are in the naturalized

language.
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Cubes: initial – select left 6 – se-

lect front 8 – black 10x10x10 frame

– black 10x10x10 frame – move front

10 – red cube size 6 – move bot 2 –

blue cube size 6 – green cube size 4 –

(some steps are omitted)

Monsters, Inc: initial – move forward – add green monster – go down 8 – go right and front – add

brown floor – add girl – go back and down – add door – add black column 30 – go up 9 – finish door –

(some steps for moving are omitted)

Deer: initial – bird’s eye view – deer head; up; left 2; back 2; { left antler }; right 2; {right antler} –

down 4; front 2; left 3; deer body; down 6; {deer leg front}; back 7; {deer leg back}; left 4; {deer leg

back}; front 7; {deer leg front} – (some steps omitted)

Figure 5.1: Some examples of users building structures using a naturalized language in Voxelurn.
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Figure 5.2: More example structures in Voxelurn
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Figure 5.3: Interface used by users to enter utterances and create definitions.

5.2 Voxelurn

World. A world state in Voxelurn contains a set of voxels, where each voxel has relations ‘row’,

‘col’, ‘height’, and ‘color’. There are two domain-specific actions, ‘add’ and ‘move’, one domain-

specific relation ‘direction’. In addition, the state contains a selection, which is a set of positions.

While our focus is Voxelurn, we can think more generally about the world as a set of objects equiped

with relations — events on a calendar, cells of a spreadsheet, or lines of text.

Core language. The system is born understanding a core language called Dependency-based Ac-

tion Language (DAL), which we created (see Table 5.1 for an overview).

The language composes actions using the usual but expressive control primitives such as ‘if’,

‘foreach’, ‘repeat’, etc. Actions usually take sets as arguments, which are represented using lambda

dependency-based compositional semantics (lambda DCS) expressions (Liang, 2013). Besides stan-

dard set operations like union, intersection and complement, lambda DCS leverages the tree depen-

dency structure common in natural language: for the relation ‘color’, ‘has color red’ refers to the

set of voxels that have color red, and its reverse ‘color of has row 1’ refers to the set of colors of

voxels having row number 1. Tree-structured joins can be chained without using any variables, e.g.,

‘has color [yellow or color of has row 1]’.
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Rule(s) Example(s) Description

A! A; A select left; add red perform actions sequentially

A! repeat N A repeat 3-1 add red top repeat action N times

A! if SA if has color red [select origin] action if Sis non-empty

A! while SA while not has color red [select left of this] action while Sis non-empty

A! foreach SA foreach this [remove has row row of this] action for each item in S
A! [A] [select left or right; add red; add red top] group actions for precedence

A! {A} {select left; add red} scope only selection

A! isolate A isolate [add red top; select has color red] scope voxels and selection

A! select S select all and not origin set the selection

A! remove S remove has color red remove voxels

A! update RS update color [color of left of this] change property of selection

S this current selection

S all | none | origin all voxels, empty set, (0,0)

Rof S | has RS has color red or yellow | has row [col of this] lambda DCS joins

not S | Sand S | Sor S this or left and not has color red set operations

N | N+N | N-N 1,. . . ,10 | 1+2 | row of this + 1 numbers and arithmetic

argmax RS | argmin RS argmax col has color red superlatives

R color | row | col | height | top | left | · · · voxel relations

C red | orange | green | blue | black | · · · color values

D top | bot | front | back | left | right direction values

S! very D of S very top of very bot of has color green syntax sugar for argmax

A! add C[D] | move D add red | add yellow bot | move left add voxel, move selection

Table 5.1: Grammar of the core language (DAL), which includes actions (A), relations (R), and sets

of values (S). The grammar rules are grouped into four categories. From top to bottom: domain-

general action compositions, actions using sets, lambda DCS expressions for sets, and domain-

specific relations and actions.
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We protect the core language from being redefined so it is always precise and usable.

1

In

addition to expressivity, the core language interpolates well with natural language. We avoid explicit

variables by using a selection, which serves as the default argument for most actions.

2

For example,

‘select has color red; add yellow top; remove’ adds yellow on top of red voxels and then removes

the red voxels.

To enable the building of more complex structures in a more modular way, we introduce a notion

of scoping. Suppose one is operating on one of the palm trees in Figure 5.3. The user might want

to use ‘select all’ to select only the voxels in that tree rather than all of the voxels in the scene.

In general, an action A can be viewed as taking a set of voxels v and a selection s, and producing

an updated set of voxels v0 and a modified selection s0. The default scoping is ‘[A]’, which is the

same as ‘A’ and returns (v0,s0). There are two constructs that alter the flow: First, ‘{A}’ takes (v,s)

and returns (v0,s), thus restoring the selection. This allows A to use the selection as a temporary

variable without affecting the rest of the program. Second, ‘isolate [A]’ takes (v,s), calls A with (s,s)

(restricting the set of voxels to just the selection) and returns (v00,s), where v00 consists of voxels in

v0 and voxels in v that occupy empty locations in v0. This allows A to focus only on the selection

(e.g., one of the palm trees). Although scoping can be explicitly controlled via ‘[ ]’, ‘isolate’, and

‘{ }’, it is an unnatural concept for non-programmers. Therefore when the choice is not explicit, the

parser generates all three possible scoping interpretations, and the model learns which is intended

based on the user, the rule, and potentially the context.

5.3 Learning interactively from definitions

The goal of the user is to build a structure in Voxelurn. In Chapter 4, the user provided interactive

supervision to the system by selecting from a list of candidates. This is practical when there are less

than tens of candidates, but is completely infeasible for a complex action space such as Voxelurn.

Roughly, 10 possible colors over the 3⇥3⇥4 box containing the palm tree in Figure 5.3 yields 10

36

distinct denotations, and many more programs. Obtaining the structures in Figure 5.1 by selecting

candidates alone would be infeasible.

This work thus uses definitions in addition to selecting candidates as the supervision signal.

Each definition consists of a head utterance and a body, which is a sequence of utterances that the

system understands. One use of definitions is paraphrasing and defining alternative syntax, which

1

Not doing so resulted in ambiguities that propagated uncontrollably, e.g., once red can mean many different colors.

2

The selection is like the turtle in LOGO, but can be a set.
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helps naturalize the core language (e.g., defining add brown top 3 times as ‘repeat 3 add brown

top’). The second use is building up complex concepts hierarchically. In Figure 5.3, add yellow

palm tree is defined as a sequence of steps for building the palm tree. Once the system understands

an utterance, it can be used in the body of other definitions. For example, Figure 5.4 shows the

full definition tree of ‘add palm tree’. Unlike function definitions in a programming language,

our definitions do not specify the exact arguments; the system has to learn to extract arguments to

achieve the correct generalization.

def: add palm tree

def: brown trunk height 3

def: add brown top 3 times

repeat 3 [add brown top]

def: go to top of tree

select very top of has color brown

def: add leaves here

def: select all sides

select left or right or front or back

add green

Figure 5.4: Defining add palm tree, tracing back to the core language (utterances without def:).

begin execute x:

if x does not parse then define x;

if user rejects all parses then define x;

execute user choice

begin define x:

repeat starting with X  [ ]
user enters x0;
if x0 does not parse then define x0;
if user rejects all x0 then define x0;
X  [X ;x0];

until user accepts X as the def’n of x;

Figure 5.5: When the user enters an utterance, the system tries to parse and execute it, or requests

that the user define it.

The interactive definition process is described in Figure 5.5. When the user types an utterance

x, the system parses x into a list of candidate programs. If the user selects one of them (based on

its denotation), then the system executes the resulting program. If the utterance is unparsable or

the user rejects all candidate programs, the user is asked to provide the definition body for x. Any
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utterances in the body not yet understood can be defined recursively. Alternatively, the user can first

execute a sequence of commands X , and then provide a head utterance for body X .

When constructing the definition body, users can type utterances with multiple parses; e.g.,

move forward could either modify the selection (‘select front’) or move the voxel (‘move front’).

Rather than propagating this ambiguity to the head, we force the user to commit to one interpretation

by selecting a particular candidate. Note that we are using interactivity to control the exploding

ambiguity.

5.4 Model and learning

Let us turn to how the system learns and predicts. This section contains prerequisites before we

describe definitions and grammar induction in Section 5.5.

Semantic parsing. Our system is based on a semantic parser that maps utterances x to programs

z, which can be executed on the current state s (set of voxels and selection) to produce the next state

s0 = JzKs. Our system is implemented as the interactive package in SEMPRE (Berant et al., 2013);

see Liang (2016) for a gentle exposition.

A derivation d represents the process by which an utterance x turns into a program z = prog(d).

More precisely, d is a tree where each node contains the corresponding span of the utterance

(start(d),end(d)), the grammar rule rule(d), the grammar category cat(d), and a list of child deriva-

tions [d
1

, . . . ,dn].

Following Zettlemoyer and Collins (2005), we define a log-linear model over derivations d

given an utterance x produced by the user u:

pq (d | x,u) µ exp(qTf(d,x,u)), (5.1)

where f(d,x,u)2Rp
is a feature vector and q 2Rp

is a parameter vector. The user u does not appear

in previous work on semantic parsing, but we use it to personalize the semantic parser trained on

the community.

We use a standard chart parser to construct a chart. For each chart cell, indexed by the start

and end indices of a span, we construct a list of partial derivations recursively by selecting child

derivations from subspans and applying a grammar rule. The resulting derivations are sorted by

model score and only the top K are kept. We use chart(x) to denote the set of all partial derivations

across all chart cells. The set of grammar rules starts with the set of rules for the core language
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Feature Description

Rule.ID ID of the rule

Rule.Type core?, used?, used by others?

Social.Author ID of author

Social.Friends (ID of author, ID of user)

Social.Self rule is authored by user?

Span (left/right token(s), category)

Scope type of scoping for each user

Table 5.2: Summary of features.

(Table 5.1), but grows via grammar induction when users add definitions (Section 5.5). Rules in

the grammar are stored in a trie based on the right-hand side to enable better scalability to a large

number of rules.

Features. Derivations are scored using a weighted combination of features. There are three types

of features, summarized in Table 5.2.

Rule features fire on each rule used to construct a derivation. ID features fire on specific rules

(by ID). Type features track whether a rule is part of the core language or induced, whether it has

been used again after it was defined, if it was used by someone other than its author, and if the user

and the author are the same (5+#rules features).

Social features fire on properties of rules that capture the unique linguistic styles of differ-

ent users and their interaction with each other. Author features capture the fact that some users

provide better, and more generalizable definitions that tend to be accepted. Friends features are

cross products of author ID and user ID, which captures whether rules from a particular author

are systematically preferred or not by the current user, due to stylistic similarities or differences

(#users+#users⇥#users features).

Span features include conjunctions of the category of the derivation and the leftmost/rightmost

token on the border of the span. In addition, span features include conjunctions of the category of

the derivation and the 1 or 2 adjacent tokens just outside of the left/right border of the span. These

capture a weak form of context-dependence that is generally helpful (<⇡V 4⇥ #cats features for a

vocabulary of size V ).

Scoping features track how the community, as well as individual users, prefer each of the 3

scoping choices (none, selection only {A}, and voxels+selection isolate {A}), as described in Sec-

tion 5.2. 3 global indicators, and 3 indicators for each user fire every time a particular scoping

choice is made (3+3⇥#users features).
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unparsable head: add red left 3 times

(add red left)

add red left

red

red

left

left

unparsable head: add red left 3 times

parsable body: repeat 3 add red left

(loop 3 (add red left))

repeat 3

3

(add red left)

add red

red

left

left

Color

Direction

Number

Action

Figure 5.6: unparsable head and parsable body as the input to grammar induction

unparsable head: add red left 3 times

parsable body: repeat 3 add red left

(loop 3 (add red left))

repeat 3

3

Action

NumberAction

induced rule: A ! A 3 times : �A.(loop 3 A)

unparsable head: add red left 3 times

parsable body: repeat 3 add red left

(loop 3 (add red left))

repeat Number Action

Number Action

induced rule: A ! A N times : �A N.(loop N A)

Figure 5.7: Matches and induced rules. The corresponding matches are shown in boxes of matching

colors. left: only abstracting the action; right: abstracting both the number and the action

Parameter estimation. When the user types an utterance, the system generates a list of candidate

next states. When the user chooses a particular next state s0 from this list, the system performs an

online AdaGrad update (Duchi et al., 2010) on the parameters q according to the gradient of the

following loss function:

� log Â
d:Jprog(d)Ks=s0

pq (d | x,u)+l ||q ||
1

,

which attempts to increase the model probability on derivations whose programs produce the next

state s0.

5.5 Grammar induction

Recall that the main form of supervision is via user definitions, which allows creation of user-defined

concepts. In this section, we show how to turn these definitions into new grammar rules that can be
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abstract action:

add red left 3 times

repeat 3 add red left

A ! A N times : �A N.(loop N A)

abstract number and color:

add red left 3 times

repeat 3 add red left

A ! add C D N times : �C D N.(loop N (add C D))

Figure 5.8: Two sets of distinct abstractions. The corresponding matches are shown in boxes of

matching colors. top: abstract the action and number; bottom: abstract color, direction and num-

bers.

used by the system to parse new utterances.

Previous systems of grammar induction for semantic parsing were given utterance-program

pairs (x,z). Both the GENLEX (Zettlemoyer and Collins, 2005) and higher-order unification (Kwiatkowski

et al., 2010) algorithms over-generate rules that liberally associate parts of x with parts of z. Though

some rules are immediately pruned, many spurious rules are undoubtedly still kept. In the interac-

tive setting, we must keep the number of candidates small to avoid a bad user experience, which

means a higher precision bar for new rules.

Fortunately, the structure of definitions makes the grammar induction task easier. Rather than

being given an utterance-program (x,z) pair, we are given a definition, which consists of an utterance

x (head) along with the body X = [x
1

, . . . ,xn], which is a sequence of utterances. The body X is fully

parsed into a derivation d, while the head x is likely only partially parsed. These partial derivations

are denoted by chart(x).

Since the system had to parse the defintion, we have access to the derivation d, rather than just

z = prog(d). d has a tree structure that limits how z can be generated. By only considering those

ways of generating z that is consistent with d, we gain higher precision, while possibly losing some

recall. In the interactive setting, a wrong and productive rule forces everyone to consider more

options, so perhaps high precision is desirable. In addition to d, we have utterances X used to form

the definition, which we make use by aligning it to x (Section 5.5.2).

A definition consists of the head utterance x, and the body of the definition X = [x
1

, . . . ,xn]
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which is a sequence of utterances defining x that all parsed in a way consistent with the derivation.

Typically, the definition is given when the system cannot parse x entirely, or parses x incorrectly

according to the current user.

At a high-level, we find matches—partial derivations in chart(x) of the head x that also occur

in the full derivation d of the body X . A grammar rule is produced by substituting any set of non-

overlapping matches by their categories. As an example, suppose the user defines

add red top times 3 as ‘repeat 3 [add red top]’.

Then we would be able to induce the following two grammar rules:

A! add C D times N :

lCDN.repeat N [add C D]

A! A times N :

lAN.repeat N [A]

The first rule substitutes primitive values (red, top, and 3) with their respective pre-terminal cate-

gories (C, D, N). The second rule contains compositional categories like actions (A), which require

some care. One might expect that greedily substituting the largest matches or the match that covers

the largest portion of the body would work, but the following example shows that this is not the

case:

A
1

A
1

A
1z }| { z }| { z }| {

add red left and here = add red left; add red| {z } | {z }
A

2

A
2

Here, both the highest coverage substitution (A
1

: add red, which covers 4 tokens of the body),

and the largest substitution available (A
2

: add red left) would generalize incorrectly. The correct

grammar rule only substitutes the primitive values (red, left).

5.5.1 Highest scoring abstractions

We now propose a grammar induction procedure that optimizes a more global objective and uses the

learned semantic parsing model to choose substitutions. More formally, let M be the set of partial
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derivations of the head whose programs appear in the derivation dX of the body X :

M def

= {d 2 chart(x) :

9d0 2 desc(dX)^prog(d) = prog(d0)},

where desc(dX) are the descendant derivations of dX . Our goal is to find a packing P✓M, which is

a set of derivations corresponding to non-overlapping spans of the head. We say that a packing P is

maximal if no other derivations may be added to it without creating an overlap.

Let packings(M) denote the set of maximal packings, we can frame our problem as finding the

maximal packing that has the highest score under our current semantic parsing model:

P⇤L = argmax

P2packings(M);
Â
d2P

score(d). (5.2)

Finding the highest scoring packing can be done using dynamic programming on P⇤i for i =

0,1, . . . ,L, where L is the length of x and P⇤
0

= /0. Since d 2 M, start(d) and end(d) (exclusive)

refer to span in the head x. To obtain this dynamic program, let Di be the highest scoring maximal

packing containing a derivation ending exactly at position i (if it exists):

Di = {di}[P⇤
start(di)

, (5.3)

di = argmax

d2M;end(d)=i
score(d[P⇤

start(d)). (5.4)

Then the maximal packing of up to i can be defined recursively as

P⇤i = argmax

D2{Ds(i)+1

,Ds(i)+2

,...,Di}
score(D) (5.5)

s(i) = max

d:end(d)i
start(d), (5.6)

where s(i) is the largest index such that Ds(i) is no longer maximal for the span (0, i) (i.e. there is a

d 2M on the span start(d)� s(i)^ end(d) i.

Once we have a packing P⇤ = P⇤L , we can go through d 2 P⇤ in order of start(d), as in Al-

gorithm 2. This generates one high precision rule per packing per definition. In addition to the

highest scoring packing, we also use a “simple packing”, which includes only primitive values (in

Voxelurn, these are colors, numbers, and directions). Unlike the simple packing, the rule induced

from the highest scoring packing does not always generalize correctly. However, a rule that often
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Input : x,dX ,P⇤

Output: rule

r x;

f  dX ;

for d 2 P⇤ do
r r[cat(d)/span(d)] f  l cat(d). f [cat(d)/d]

return rule (cat(dX)! r : f )

Algorithm 2: Extract a rule r from a derivation dX of body X and a packing P⇤. Here, f [t/s]
means substituting s by t in f , with the usual care about names of bound variables.

generalizes incorrectly should be down-weighted, along with the score of its packings. As a result,

a different rule might be induced next time, even with the same definition.

5.5.2 Extending the chart via alignment

Algorithm 2 yields high precision rules, but fails to generalize in some cases. Suppose that move

up is defined as move top, where up does not parse, and does not match anything. We would like

to infer that up means top. To handle this, we leverage a property of definitions that we have not

used thus far: the utterances themselves. If we align the head and body, then we would intuitively

expect aligned phrases to correspond to the same derivations. Under this assumption, we can then

transplant these derivations from dX to chart(x) to create new matches. This is more constrained

than the usual alignment problem (e.g., in machine translation) since we only need to consider spans

of X which corresponds to derivations in desc(dX).

Input : x,X ,dX
for d 2 desc(dX), x0 2 spans(x) do

if aligned(x0,d,(x,X)) then
d0  d;

start(d0) start(x0);
end(d0) end(x0);
chart(x) chart(x)[d0

end
end

Algorithm 3: Extending the chart by alignment: If d is aligned with x0 based on the utterance,

then we pretend that x0 should also parse to d, and d is transplanted to chart(x) as if it parsed from

x0.

Algorithm 3 provides the algorithm for extending the chart via alignments. The aligned function



CHAPTER 5. NATURALIZING A PROGRAMMING LANGUAGE 73

Figure 5.9: The target used for the qualifier.

is implemented using the following two heuristics:

• exclusion: if all but 1 pair of short spans (1 or 2 tokens) are matched, the unmatched pair is

considered aligned.

• projectivity: if d
1

,d
2

2 desc(dX)\chart(x), then ances(d
1

,d
2

) is aligned to the corresponding

span in x.

With the extended chart, we can run the algorithm from Section 5.5.1 to induce rules. The trans-

planted derivations (e.g., up) might now form new matches which allows the grammar induction

to induce more generalizable rules. We only perform this extension when the body consists of one

utterance, which tends to be a paraphrase. Bodies with multiple utterances tend to be new concepts

(e.g., add green monster), for which alignment is impossible. Because users have to select from

candidates parses in the interactive setting, inducing low precision rules that generate many parses

degrade the user experience. Therefore, we induce alignment-based rules conservatively—only

when all but 1 or 2 tokens of the head aligns to the body and vice versa.

5.6 Experiments

Setup. Our ultimate goal is to create a community of users who can build interesting structures

in Voxelurn while naturalizing the core language. We created this community using Amazon Me-

chanical Turk (AMT) in two stages. First, we had qualifier tasks, in which an AMT worker was

instructed to replicate a fixed target exactly (Figure 5.9), ensuring that the initial users are familiar

with at least some of the core language, which is the starting point of the naturalization process.

Next, we allowed the workers who qualified to enter the second freebuilding task, in which they

were asked to build any structure they wanted in 30 minutes. This process was designed to give

users freedom while ensuring quality. The analogy of this scheme in a real system is that early users
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Figure 5.10: Learning curves. Left: cumulative percentage of all utterances that are part of the core
language, the induced language, or unparsable by the system. Right: cumulative percentage of

accepted utterances belonging to the induced language, overall and for the 5 heaviest users.

(or a small portion of expert users) have to make some learning investment, so the system can learn

and become easier for other users.

Statistics. 70 workers passed the qualifier task, and 42 workers participated in the final free-

building experiment. They built 230 structures. There were over 103,000 queries consisting of

5,388 distinct token types. Of these, 64,075 utterances were tried and 36,589 were accepted (so an

action was performed). There were 2,495 definitions combining over 15,000 body utterances with

6.5 body utterances per head on average (96 max). From these definitions, 2,817 grammar rules

were induced, compared to less than 100 core rules. Over all queries, there were 8.73 parses per

utterance on average (starting from 1 for core).

Is naturalization happening? The answer is yes according to Figure 5.10 and Figure 5.11, which

plots the cummulative percentage of utterances that are core, induced, or unparsable. To rule out

that more induced utterances are getting rejected, we consider only accepted utterances in the left of

Figure 5.10, which plots the percentage of induced rules among accepted utterances for the entire

community, as well as for the 5 heaviest users. Since unparsable utterances cannot be accepted,

accepted core (which is not shown) is the complement of accepted induced. At the conclusion

of the experiment, 72.9% of all accepted utterances are induced—this becomes 85.9% if we only

consider the final 10,000 accepted utterances.

Three modes of naturalization are outlined in Table 5.3. For very common operations, like

moving the selection, people found select left too verbose and shorterned this to l, left, >, sel l.
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Figure 5.11: Left: expressiveness measured by the cumulative average ratio of the length of the

program to the length of the corresponding utterance. Right: cumulative average of the number of

derivations per utterance, as a measure of ambiguity.

Short forms
left, l, mov left, go left, <, sel left

br, black, blu, brn, orangeright, left3

add row brn left 5 := add row brown left 5

Alternative syntax
go down and right := go down; go right

select orange := select has color orange

add red top 4 times := repeat 4 [add red top]

l white := go left and add white

mov up 2 := repeat 2 [select up]

go up 3 := go up 2; go up

Higher level
add red plate 6 x 7, green cube size 4,

add green monster, black 10x10x10 frame,

flower petals, deer leg back, music box, dancer

Table 5.3: Example definitions. See CodaLab worksheet for the full leaderboard.

One user preferred go down and right instead of select bot; select right in core and defined it

as go down; go right. Definitions for high-level concepts tend to be whole objects that are not

parameterized (e.g., dancer). The bottom plot of Figure 5.10 suggests that users are defining and

using higher level concepts, since programs become longer relative to utterances over time.

As a result of the automatic but implicit grammar induction, some concepts do not generalize

correctly. In definition head 3 tall 9 wide white tower centered here, 3 and 9 did not appear in the

body; for black 10x10x10 frame, we failed to tokenize.
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Learned parameters. Training using L1 regularization, we obtained 1713 features with non-

zero parameters. One user defined many concepts consisting of a single short token, and the So-

cial.Author feature for that user has the most negative weight overall. With user compatibility

(Social.Friends), some pairs have large positive weights and others large negative weights. The iso-

late scoping choice (which allows easier hierarchical building) received the most positive weights,

both overall and for many users. The 2 highest scoring induced rules correspond to add row red

right 5 and select left 2.

Incentives. Having complex structures shows that the actions in Voxelurn are expressive and that

hierarchical definitions are useful. To incentivize this behavior, we created a leaderboard which

ranked structures based on recency and upvotes (like Hacker News). Over the course of 3 days, we

picked three prize categories to be released daily. The prize categories for each day were bridge,

house, animal; tower, monster, flower; ship, dancer, and castle.

To incentivize more definitions, we also track citations. When a rule is used in an accepted

utterance by another user, the rule (and its author) receives a citation. We pay bonuses to top

users according to their h-index. Most cited definitions are also displayed on the leaderboard. Our

qualitative results should be robust to the incentives scheme, because the users do not overfit to

the incentives—e.g., around 20% of the structures are not in the prize categories and users define

complex concepts that are rarely cited.

5.7 Related work and discussion

This work is an evolution of Wang et al. (2016), but differs crucially in several ways: While Wang

et al. (2016) starts from scratch and relies on selecting candidates, this work starts with a program-

ming language (PL) and additionally relies on definitions, allowing us to scale. Instead of having a

private language for each user, the user community in this work shares one language.

Azaria et al. (2016) presents Learning by Instruction Agent (LIA), which also advocates learning

from users. They argue that developers cannot anticipate all the actions that users want, and that the

system cannot understand the corresponding natural language even if the desired action is built-in.

Like Jia et al. (2017), Azaria et al. (2016) starts with an ad-hoc set of initial slot-filling commands

in natural language as the basis of further instructions—our approach starts with a more expressive

core PL designed to interpolate with natural language. Compared to previous work, this work

studied interactive learning in a shared community setting and hierarchical definitions resulting in
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more complex concepts.

Androutsopoulos et al. (1995) analyzed alternatives to natural language interface such as a query

language, form-based interface and GUI. They point out that the action space is not well-defined

with an NLI and that users confuse linguistic failures with conceptual failures. They sugggest that

NL is not an appropriate medium for communicating with a computer system that has a precise

action space. In this work, the core language is precise and defines the action space, and the natural-

ization process happens on top of that. Each new user can ease into the process and take advantage

of the experience of previous users.

Allowing ambiguity and a flexible syntax is a key reason why natural language is easier to

produce—this cannot be achieved by PLs such as Inform and COBOL which look like natural

language. In this work, we use semantic parsing techniques that can handle ambiguity (Zettlemoyer

and Collins, 2005, 2007; Kwiatkowski et al., 2010; Liang et al., 2011; Pasupat and Liang, 2015). In

semantic parsing, the semantic representation and action space is usually designed to accommodate

the natural language that is considered constant. In contrast, the action space is considered constant

in the naturalizing PL approach, and the language adapts to be more natural while accommodating

the action space.

Our work demonstrates that interactive definitions is a strong and usable form of supervision. In

the future, we wish to test these ideas in more domains, naturalize a real PL, and handle paraphrasing

and implicit arguments. In the process of naturalization, both data and the semantic grammar have

important roles in the evolution of a language that is easier for humans to produce while still parsable

by computers.

Reproducibility. All code, data, and experiments for this chapter are available on the CodaLab

platform:

https://worksheets.codalab.org/worksheets/0xbf8f4f5b42e54eba9921f7654b3c5c5d

and a demo: http://www.voxelurn.com

https://worksheets.codalab.org/worksheets/0xbf8f4f5b42e54eba9921f7654b3c5c5d
http://www.voxelurn.com


Chapter 6

Conclusions

6.1 Issues

We summarize some problems and difficulties we encountered in Chapter 4 and Chapter 5.

6.1.1 Issues in learning language games

Selection does not scale. In Chapter 4, the action space can expand to tens of thousands of rela-

tively short logical forms of 6-8 predicates if we allow binary set operations such as union, intersec-

tion and difference. With tens of thousands of logical forms, learning from denotation cannot reduce

this space to a small enough space for users to inspect. Under the interactive setting, users cannot

inspect hundreds of candidates to select the correct one. As a result, we reduced the richness of the

action space until learning from denotation can give sufficient reduction to around 100 candidates,

which becomes manageable. In principle, selection is a weak and unscalable form of supervision

because user effort grows linearly as the action space grow exponentially. This is the main reason

that prompted us to leverage definitions in Chapter 5. Other potential solutions include multi-step

selection on parts of the logical form, and effective curriculum learning.

Need for off-policy evaluations. Due to user adaptation, evaluation can be tricky for interactive

systems. For example, a scientifically pure evaluation comparing the pragmatic and regular setting

would require A/B testing that randomly direct users to each setting. However, progress would be

slow and expensive if every decision require that level of rigor. Instead, we just used data collected

in a normal session, and model that is developed on that to test the pragmatic setting. This way, at

least any gain in the pragmatic setting is probably real, while it is also likely to not detect gains that

78
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would otherwise exist had we done the A/B test. This is not a problem unique to us—any settings

(such as learning to rank and recommend) where the data collected depends on system capability

have this issue, and research on counter-factual evaluations seek to address it. However, language

use can be particularly adaptive and exacerbate the problem under our setting.

Pragmatics. While pragmatics helped top users, we expect that as the action space expands, and

more shared language among users, our form of pragmatics will play a less important role. In

addition, probabilistic pragmatics introduces an extra hyper-parameter, and tuning it can affect the

accuracy. I did not carry out the statistical analysis on this.

Ultimately, I was more interested in building better systems rather than testing scientific hypoth-

esis because there just seem to be too many factors to control for once the behavior of a complex

computer system can affect the result. At this moment, at some risk of deceiving myself, there

seem to be enough obvious shortcomings to improve that not every decision have to be justified by

a rigorous test.

Insufficient feedback. If the computer is able to talk back to the user in a similar language that

the user is teaching, then the user can potentially adapt better. In this setting, all the feedback is

through the result list, and the user receive no linguistic feedback. As a result, the language use

were not as adaptive as we hoped. Most likely, users just stuck with their own interpretation of the

action space, and never adapted to a better one. Instances of simplifying the language is way more

common than changing the semantics to adapt to the action space.

6.1.2 Issues in naturalizing a programming language

Rigid dependencies. Motivated by programming languages, we used definitions with inferred

arguments to expand the language. An annoying consequence is that definitions have a rigid depen-

dency structure on each other, much like in regular programming languages. If the definitions are

shuffled, then they would have different generalization which is usually worse than the original. For

example, even the randomization due to threading can have a negative effect, and we had to make

sure definitions are received in exactly the same order as in the initial experiment.

Unpredictability. After thousands of rules are induced (compared to less than 100 initially), I

found it difficult to predict what the system would do on a particular utterance. Since the grammar
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induction method use model scores to determine what to abstract, I could not predict how each

definition would generalize.

Learning from denotation gives little value. While a reasonable number of logical forms exe-

cuted to the same denotation in the language games setting, the denotation in Chapter 5 consists of

hundreds to tens of thousands of voxels, which is arguable more complex than the programs that

generated them. In particular, random programs are unlikely to have the same denotation. The only

place where learning denotation helped was for scoping constructions.

Lack of discoverability. While a community of users built on each other, and taught the computer

various language, a new user coming in did not have a systematic way of learning about this. Our

attempt was to use the leaderboard to show new users some example utterances that they can try.

Another method we considered was to use an autocomplete function. We did not deploy autocom-

plete because we wanted to encourage our users to try new utterances and define more instead of

just use what’s already in the system. This is related to the lack of system-initiative, and a more

conversational system might be in a better position to address this. For the computer to have more to

contribute, partial observability and stochasticity might be helpful, which we completely ignored

in our work.

Lack of abstract generalization. Our initial hope is if many users taught the computer, then all

reasonable utterances can be taught with enough users, and the computer would understand most

future utterances. This would be the case if all future utterances are similar to existing utterances,

and a reasonable grammar induction algorithm can eventually achieve very high coverage. This

turned out to be far from the case, and it is relatively easy to come up with utterances that does not

generalize after learning on over 60k commands.

Consider red cube size 5 where there are 32 ways of permuting and choosing between po-

sitional, keyword and omitted arguments:

p({e,red,color red}⇥{e,5,size 5}⇥{cube}) (6.1)

= {cube,red cube,color red cube, . . . ,cube size 5 color red}. (6.2)

Our high precision syntax-based grammar induction treat all these as different from each other.
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Procedural rather than declarative. This is related to the ability to generalize. Suppose we can

build a tree, and now consider “a big tree” and “make tree 2 times bigger”. Our precise procedural

action space does not easily allow for declarative generalizations and vague statements.

6.2 Applications

We discuss some criteria on what might be promising applications of adaptive language interfaces,

and we briefly describe some of our work on real-world applications.

6.2.1 Criteria on applications

Because we introduce unresolved ambiguities into the language, there has to be some way to even-

tually resolve them. A simple method is just to show all the potential results to the user, and the

user pick out the correct one. This is beneficial when the results are easier to verify than to specify

precisely. For example, if we just display programs, then the programs have to be easier to read than

to write from scratch. Many programming languages are like this—for example, bash (especially if

options are in words) and Java (heavy on syntax), but perhaps not very terse languages like regex or

Perl.

Better yet, we can just display the denotations if the users can quickly and effectively inspect

the them. This was somewhat true in blocks world, where it is easier to determine if a cat is added

than writing the program to add it. As discussed in Section 2.3, it would help if the task is more like

ad hoc commands rather than software engineering.

Two particular applications that we did some work on are data visualization and calendar.

6.2.2 Calendar

Event scheduling is a common yet unsolved task: while several available calendar programs allow

limited natural language input, in our experience they all fail as soon as they are given something

slightly complicated, such as ‘Move all the tuesday afternoon appointments back an hour’. We

think interactive learning can give us a better NLI for calendars, which has more real world impact

than blocks world. Furthermore, aiming to expand our learning methodology from definition to

demonstration, we chose this domain as most users are already familiar with the common calendar

GUI with an intuition for its manual manipulation. Additionally, as calendar NLIs are already

deployed, particularly on mobile, we hoped users will naturally be inclined to use natural language

style phrasing rather than a more technical language as we saw in the blocks world domain.
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6.2.3 Data visualization

5 research systems using natural language for data analysis and visualization are examined and

compared in Srinivasan and Stasko (2017). Data visualization is fairly interactive by nature, and

charts are designed to convey a lot of information visually. In popular plotting libraries such as

ggplot, matplotlib and vega, commands tend be easier to interpret than to write. However, using

these libraries to produce charts requires frequent references to documentations, as well as trial and

errors. As a result, there seem to be an opportunity to use a more adaptive language interface to

visualize data.

6.3 Final remarks

NLIs have the potential to complement GUIs and programming for many tasks, and doing so can

bridge the great digital divide of skills and enable all of us to better make use of computers. How-

ever, until computers think like humans, they may not be able to satisfactorily understand human

language, and we might have to settle for adaptive language interfaces where humans users have to

partially adapt to the capabilities of computers as computers adapt to human communication pref-

erences. Because static datasets does not account for system capabilities, such adaptation needs to

be part of an interactive learning process.

In this thesis, we studied two extremes interactive language learning settings, starting from

scratch and starting from a programming language. To learn from scratch, the human can use any

language, but have to adapt to computer capabilities as the computer learns their language. Starting

from programming language is the opposite—the human have to use a language the computer al-

ready understands, and they then teach the computer to understand languages that they prefer more.

The vast space between standard natural languages and rigid programming languages is where adap-

tive language interface can potentially improve human-computer communication when computers

capabilities differ significantly from humans.
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Samples from Voxelurn

A.1 Leaderboard

The full leaderboard is linked in the CodaLab worksheet for Wang et al. (2017):

https://worksheets.codalab.org/rest/bundles/0x1d0b5ff13ab541d5abf4d37fd63ce9d3/

contents/blob/static_leaderboard.html

The original CodaLab worksheet is here:

https://worksheets.codalab.org/worksheets/0xbf8f4f5b42e54eba9921f7654b3c5c5d/

We include just a few examples and their corresponding utterances in Figure A.1 and Figure A.2.

A.2 Citations

We show users with the most number of citations in Figure A.3, and the breakdown according to

utterances.
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https://worksheets.codalab.org/rest/bundles/0x1d0b5ff13ab541d5abf4d37fd63ce9d3/contents/blob/static_leaderboard.html
https://worksheets.codalab.org/rest/bundles/0x1d0b5ff13ab541d5abf4d37fd63ce9d3/contents/blob/static_leaderboard.html
https://worksheets.codalab.org/worksheets/0xbf8f4f5b42e54eba9921f7654b3c5c5d/
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Figure A.1: Selected leaderboard entries and the sequence of commands producing them.
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Figure A.2: Selected leaderboard entries and the sequence of commands producing them.
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Figure A.3: Leaderboard of citations.
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