
Feature Noising

Sida Wang, joint work with

Part 1: Stefan Wager, Percy Liang
Part 2: Mengqiu Wang, Chris Manning, Percy

Liang, Stefan Wager

Outline

•  Part 0: Some backgrounds

•  Part 1: Dropout as adaptive regularization
•  with applications to semi-supervised learning

•  joint work with Stefan Wager and Percy

•  Part 2: Applications to structured prediction
using CRFs
•  when the log-partition function cannot be easily

computed

•  joint work with Mengqiu, Chris, Percy and Stefan
Wager

The basics of dropout training

•  Introduced by Hinton et al. in “Improving neural
networks by preventing co-adaptation of feature
detectors”

•  For each example, randomly select features
•  zero them
•  compute the gradient, make an update

•  repeat

Empirically successful

•  Dropout is important in some recent successes
•  won the ImageNet challenge [Krizhevsky et al.,

2012]

•  won the Merck challenge [Dahl et al., 2012]

•  Improved performance on standard datasets
•  images: MNIST, CIFAR, ImageNet, etc.
•  document classification: Reuters, IMDB, Rotten

Tomatoes, etc.

•  speech: TIMIT, GlobalPhone, etc.

Lots of related works already

Variants

•  DropConnect [Wan et al., 2013]
•  Maxout networks [Goodfellow et al., 2013]

Analytical integration
•  Fast Dropout [Wang and Manning, 2013]

•  Marginalized Corrupted Features [van der
Maaten et al., 2013]

Many other works report empirical gains

Outline

•  Part 0: Some backgrounds

•  Part 1: Dropout as adaptive regularization
•  with applications to semi-supervised learning

•  Part 2: Applications to structured prediction
using CRFs
•  when the log-partition function cannot be easily

computed

Theoretical understanding?

•  Dropout as adaptive regularization
•  feature noising -> interpretable penalty term

•  Semi-supervised learning
•  feature dependent, label independent regularizer:

Loss(Dropout(data))

= Loss(data)+Regularizer(data)

Regularizer(Unlabeled data)

Dropout for Log-linear Models

•  Log likelihood (e.g., softmax classification):

✓ = [✓1, ✓2, . . . , ✓K]

log p(y|x; ✓) = x

T
✓y �A(x

T
✓)

Dropout for Log-linear Models

•  Log likelihood (e.g., softmax classification):

•  Dropout:

•  Dropout objective:

✓ = [✓1, ✓2, . . . , ✓K]

log p(y|x; ✓) = x

T
✓y �A(x

T
✓)

E[x̃] = x

x̃j =

(
2xj with p=0.5

0 otherwise

E[log p(y|x̃; ✓)]| {z }
Loss(Dropout(data))

= E[x̃T
✓y]� E[A(x̃

T
✓)]

Loss(Dropout(data))

= Loss(data)+Regularizer(data)

Dropout for Log-linear Models

•  Log likelihood (e.g., softmax classification):

•  Dropout:

•  Dropout objective:

✓ = [✓1, ✓2, . . . , ✓K]

log p(y|x; ✓) = x

T
✓y �A(x

T
✓)

E[x̃] = x

x̃j =

(
2xj with p=0.5

0 otherwise

Loss(Dropout(data))

= Loss(data)+Regularizer(data)

E[log p(y|x̃; ✓)]| {z }
-Loss(Dropout(data))

= E[x̃T
✓y]� E[A(x̃

T
✓)]

Dropout for Log-linear Models

•  We can rewrite the dropout log-likelihood

•  Dropout reduces to a regularizer

R(✓, x) = E[A(x̃T
✓)]�A(xT

✓)

E[log p(y|x̃; ✓)] = E[x̃T
✓y] �E[A(x̃

T
✓)]

log p(y|x; ✓) = x

T
✓y �A(x

T
✓)

E[log p(y|x̃; ✓)]| {z }
-Loss(Dropout(data))

= log p(y|x; ✓)| {z }
-Loss(data)

�(E[A(x̃

T
✓)]�A(x

T
✓)| {z }

Regularizer(data)

)

Second-order delta method

Take the Taylor expansion

A(s) ⇡ A(s0) + (s� s0)
TA0(s0) + (s� s0)

T A00(s0)

2
(s� s0)

Second-order delta method

Take the Taylor expansion

Substitute ,
Take expectations to get the quadratic
approximation:

A(s) ⇡ A(s0) + (s� s0)
TA0(s0) + (s� s0)

T A00(s0)

2
(s� s0)

s = s̃

def
= ✓

T
x̃ s0 = E[s̃]

R

q
(✓, x) =

1

2

E[(s̃� s)Tr2
A(s)(s̃� s)]

=

1

2

tr(r2
A(s)Cov(s̃))

Example: logistic regression

•  The quadratic approximation

R

q(✓, x) =
1

2
A

00(xT
✓)Var[x̃T

✓]

Example: logistic regression

•  The quadratic approximation

•  represents uncertainty:

R

q(✓, x) =
1

2
A

00(xT
✓)Var[x̃T

✓]

A

00(xT
✓) = p(1� p)

p = p(y|x; ✓) = (1 + exp(�yx

T
✓))

�1

Example: logistic regression

•  The quadratic approximation

•  represents uncertainty:

•  is L2-regularization after

 normalizing the data

R

q(✓, x) =
1

2
A

00(xT
✓)Var[x̃T

✓]

Var[x̃T
✓] =

X

j

✓

2
jx

2
j

A

00(xT
✓) = p(1� p)

p = p(y|x; ✓) = (1 + exp(�yx

T
✓))

�1

The regularizers

•  Dropout on Linear Regression

•  Dropout on Logistic Regression

•  Multiclass, CRFs [Wang et al., 2013]

R

q(✓) =
1

2

X

j

✓

2
j

X

i

pi(1� pi)x
(i)2
j

R

q(✓) =
1

2

X

j

✓

2
j

X

i

x

(i)2
j

Dropout intuition

•  Regularizes “rare” features less, like AdaGrad:
there is actually a more precise connection
[Wager et al., 2013]

•  Big weights are okay if they contribute only to
confident predictions

•  Normalizing by the diagonal Fisher information

R

q(✓) =
1

2

X

j

✓

2
j

X

i

pi(1� pi)x
(i)2
j

Semi-supervised Learning

•  These regularizers are label-independent
•  but can be data adaptive in interesting ways
•  labeled dataset

•  unlabeled data

•  We can better estimate the regularizer

for some tunable .

D = {x1, x2, . . . , xn}
Dunlabeled = {u1, u2, . . . , un}

R⇤(✓,D,Dunlabeled)

def
=

n

n+ ↵m

⇣ nX

i=1

R(✓, xi) + ↵

mX

i=1

R(✓, ui)
⌘
.

↵

Semi-supervised intuition

•  Like other semi-supervised methods:
•  transductive SVMs [Joachims, 1999]
•  entropy regularization [Grandvalet and Bengio,

2005]

•  EM: guess a label [Nigam et al., 2000]
•  want to make confident predictions on the

unlabeled data

•  Get a better estimate of the Fisher information

R

q(✓) =
1

2

X

j

✓

2
j

X

i

pi(1� pi)x
(i)2
j

IMDB dataset [Maas et al., 2011]

•  25k examples of positive reviews

•  25k examples of negative reviews
•  Half for training and half for testing

•  50k unlabeled reviews also containing neutral
reviews

•  300k sparse unigram features

•  ~5 million sparse bigram features

Experiments: semi-supervised

•  Add more unlabeled data (10k labeled)
improves performance

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0 10000 20000 30000 40000
0.8

0.82

0.84

0.86

0.88

0.9

size of unlabeled data

a
cc

u
ra

cy

dropout+unlabeled

dropout

L2

5000 10000 15000
0.8

0.82

0.84

0.86

0.88

0.9

size of labeled data

a
cc

u
ra

cy

dropout+unlabeled

dropout

L2

Figure 2: Test set accuracy on the IMDB dataset [12] with unigram features. Left: 10000 labeled
training examples, and up to 40000 unlabeled examples. Right: 3000-15000 labeled training exam-
ples, and 25000 unlabeled examples. The unlabeled data is discounted by a factor ↵ = 0.4.

where the first two terms form a linear approximation to the loss and the third term is an L2-
regularizer. Thus, SGD progresses by repeatedly solving linearized L2-regularized problems.

As discussed by Duchi et al. [11], a problem with classic SGD is that it can be slow at learning
weights corresponding to rare but highly discriminative features. This problem can be alleviated
by running a modified form of SGD with ˆ�

t+1 =

ˆ�
t

� ⌘A�1
t

g
t

, where the transformation A
t

is
also learned online; this leads to the AdaGrad family of stochastic descent rules. Duchi et al. use
A

t

= diag(G
t

)

1/2 where G
t

=

P

t

i=1 gig
>
i

and show that this choice achieves desirable regret
bounds in the presence of rare but useful features. At least superficially, AdaGrad and dropout seem
to have similar goals: For logistic regression, they can both be understood as adaptive alternatives
to methods based on L2-regularization that favor learning rare, useful features. As it turns out, they
have a deeper connection.

The natural way to incorporate dropout regularization into SGD is to replace the penalty term
k�k22/2⌘ in (15) with the dropout regularizer, giving us an update rule

ˆ�
t+1 = argmin

�

n

`
xt, yt(

ˆ�
t

) + g
t

· (� � ˆ�
t

) +Rq
(� � ˆ�

t

)

o

(16)

where, Rq is the quadratic noising regularizer. From (11) we see that

Rq
(� � ˆ�

t

) =

1

2

(� � ˆ�
t

)

>
diag(H

t

)(� � ˆ�
t

),where H
t

=

t

X

i=1

r2`
xi, yi(

ˆ�
t

). (17)

This implies that dropout descent is first-order equivalent to an adaptive SGD procedure with A
t

=

diag(H
t

). To see the connection between AdaGrad and this dropout-based online procedure, recall
that for GLMs both of the expressions

E
�

⇤
⇥

r2`
x, y

(�⇤
)

⇤

= E
�

⇤
⇥

r`
x, y

(�⇤
)r`

x, y

(�⇤
)

>⇤ (18)

are equal to the Fisher information I [16]. In other words, as ˆ�
t

converges to �⇤, G
t

and H
t

are both
effectively estimating the Fisher information. Thus, by using dropout instead of L2-regularization
to solve linearized problems in online learning, we end up with an AdaGrad-like algorithm.

Of course, the connection between AdaGrad and dropout is not perfect. In particular, AdaGrad
allows for a more aggressive learning rate by using A

t

= diag(G
t

)

�1/2 instead of diag(G
t

)

�1.
But, at a high level, AdaGrad and dropout appear to both be aiming for the same goal: scaling
the features by the Fisher information to make the level-curves of the objective more circular. In
contrast, L2-regularization makes no attempt to sphere the level curves, and AROW [17]—another
popular adaptive method for online learning—only attempts to normalize the effective feature matrix
but doesn’t consider the sensitivity of the loss to changes in the model weights.

7

Experiments: semi-supervised

•  Add more labeled data (40k unlabeled)
improves performance

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0 10000 20000 30000 40000
0.8

0.82

0.84

0.86

0.88

0.9

size of unlabeled data

a
cc

u
ra

cy

dropout+unlabeled

dropout

L2

5000 10000 15000
0.8

0.82

0.84

0.86

0.88

0.9

size of labeled data

a
cc

u
ra

cy

dropout+unlabeled

dropout

L2

Figure 2: Test set accuracy on the IMDB dataset [12] with unigram features. Left: 10000 labeled
training examples, and up to 40000 unlabeled examples. Right: 3000-15000 labeled training exam-
ples, and 25000 unlabeled examples. The unlabeled data is discounted by a factor ↵ = 0.4.

where the first two terms form a linear approximation to the loss and the third term is an L2-
regularizer. Thus, SGD progresses by repeatedly solving linearized L2-regularized problems.

As discussed by Duchi et al. [11], a problem with classic SGD is that it can be slow at learning
weights corresponding to rare but highly discriminative features. This problem can be alleviated
by running a modified form of SGD with ˆ�

t+1 =

ˆ�
t

� ⌘A�1
t

g
t

, where the transformation A
t

is
also learned online; this leads to the AdaGrad family of stochastic descent rules. Duchi et al. use
A

t

= diag(G
t

)

1/2 where G
t

=

P

t

i=1 gig
>
i

and show that this choice achieves desirable regret
bounds in the presence of rare but useful features. At least superficially, AdaGrad and dropout seem
to have similar goals: For logistic regression, they can both be understood as adaptive alternatives
to methods based on L2-regularization that favor learning rare, useful features. As it turns out, they
have a deeper connection.

The natural way to incorporate dropout regularization into SGD is to replace the penalty term
k�k22/2⌘ in (15) with the dropout regularizer, giving us an update rule

ˆ�
t+1 = argmin

�

n

`
xt, yt(

ˆ�
t

) + g
t

· (� � ˆ�
t

) +Rq
(� � ˆ�

t

)

o

(16)

where, Rq is the quadratic noising regularizer. From (11) we see that

Rq
(� � ˆ�

t

) =

1

2

(� � ˆ�
t

)

>
diag(H

t

)(� � ˆ�
t

),where H
t

=

t

X

i=1

r2`
xi, yi(

ˆ�
t

). (17)

This implies that dropout descent is first-order equivalent to an adaptive SGD procedure with A
t

=

diag(H
t

). To see the connection between AdaGrad and this dropout-based online procedure, recall
that for GLMs both of the expressions

E
�

⇤
⇥

r2`
x, y

(�⇤
)

⇤

= E
�

⇤
⇥

r`
x, y

(�⇤
)r`

x, y

(�⇤
)

>⇤ (18)

are equal to the Fisher information I [16]. In other words, as ˆ�
t

converges to �⇤, G
t

and H
t

are both
effectively estimating the Fisher information. Thus, by using dropout instead of L2-regularization
to solve linearized problems in online learning, we end up with an AdaGrad-like algorithm.

Of course, the connection between AdaGrad and dropout is not perfect. In particular, AdaGrad
allows for a more aggressive learning rate by using A

t

= diag(G
t

)

�1/2 instead of diag(G
t

)

�1.
But, at a high level, AdaGrad and dropout appear to both be aiming for the same goal: scaling
the features by the Fisher information to make the level-curves of the objective more circular. In
contrast, L2-regularization makes no attempt to sphere the level curves, and AROW [17]—another
popular adaptive method for online learning—only attempts to normalize the effective feature matrix
but doesn’t consider the sensitivity of the loss to changes in the model weights.

7

Quantitative results on IMDB

Method \ Settings Supervised Semi-sup.

MNB - unigrams with SFE
[Su et al., 2011]

83.62 84.13

Vectors for sentiment analysis
[Maas et al., 2011]

88.33 88.89

This work: dropout + unigrams 87.78 89.52

This work: dropout + bigrams 91.31 91.98

Experiments: other datasets

Dataset \ Settings L2 Drop +Unlbl
Subjectivity [Peng and Lee,
2004]

88.96 90.85 91.48

Rotten Tomatoes [Peng and
Lee, 2005]

73.49 75.18 76.56

20-newsgroups 82.19 83.37 84.71

CoNLL-2003 80.12 80.90 81.66

Outline

•  Part 0: Some backgrounds

•  Part 1: Dropout as adaptive regularization
•  with applications to semi-supervised learning

•  With Stefan and Percy

•  Part 2: Applications to structured prediction
using CRFs
•  when the log-partition function cannot be easily

computed

•  with Mengqiu, Chris, Percy and Stefan

Log-linear structured prediction

•  A vector of scores

•  The likelihood is:

•  might be really huge!

s = (s1, . . . , s|Y|) sy = f(y, x) · ✓

p(y | x; ✓) = exp{sy �A(s)}

A(s) = log

X

y

exp{sy}

|Y|

What about structured prediction?

•  Recall that in logistic regression:

•  What if we cannot easily compute the log-
partition function A? and its second derivatives?

R

q(✓) =
1

2

X

j

✓

2
j

X

i

pi(1� pi)x
(i)2
j

The original setup

Take the Taylor expansion

Substitute ,
Take expectations to get the quadratic
approximation:

A(s) ⇡ A(s0) + (s� s0)
TA0(s0) + (s� s0)

T A00(s0)

2
(s� s0)

s = s̃

def
= ✓

T
x̃

s0 = E[s̃]

R

q
(✓, x) =

1

2

E[(s̃� s)Tr2
A(s)(s̃� s)]

=

1

2

tr(r2
A(s)Cov(s̃))

The structured prediction setup

Take the Taylor expansion

Substitute ,
Take expectations to get the quadratic
approximation:

A(s) ⇡ A(s0) + (s� s0)
TA0(s0) + (s� s0)

T A00(s0)

2
(s� s0)

s0 = E[s̃]

R

q
(✓, x) =

1

2

E[(s̃� s)Tr2
A(s)(s̃� s)]

=

1

2

tr(r2
A(s)Cov(s̃))

s = s̃
def
= ✓ · f̃(y, x)

Use the independence structure

•  Depends on the underlying graphical model

•  We assume we can do exact inference via
message passing (e.g. clique tree)

•  E.g. Linear-chain CRF:

f(y, x) =
TX

t=1

gt(yt�1, yt, x)

In this case, the contribution to the regularizer
from noising is Var[s̃y] =

P
j

�

2
✓

2
yj

.

• Dropout:
˜

f(y, x) = f(y, x) � z, where � takes the el-
ementwise product of two vectors. Here, z is
a vector with independent components which
has z

i

= 0 with probability �, z
i

=

1
1��

with
probability 1 � �. In this case, Var[s̃y] =

P
j

gj(x)2�
1��

✓

2
yj

.

• Multiplicative Gaussian:
˜

f(y, x) = f(y, x) � (1 + "), where
" ⇠ N (0, �

2
I

d⇥d

). Here, Var[s̃y] =P
j

g

j

(x)

2
�

2
✓

2
yj

. Note that under our second-
order approximation R

q
(✓, x), the multiplica-

tive Gaussian and dropout schemes are equiva-
lent, but they differ under the original regular-
izer R(✓, x).

2.1 Semi-supervised learning

A key observation (Wager et al., 2013) is that
the noising regularizer R (7), while involving a
sum over examples, is independent of the output
y. This suggests estimating R using unlabeled
data. Specifically, if we have n labeled examples
D = {x1, x2, . . . , xn} and m unlabeled examples
Dunlabeled = {u1, u2, . . . , un}, then we can define a
regularizer that is a linear combination the regular-
izer estimated on both datasets, with ↵ tuning the
tradeoff between the two:

R⇤(✓,D,Dunlabeled) (10)

def
=

n

n+ ↵m

⇣ nX

i=1

R(✓, x

i

) + ↵

mX

i=1

R(✓, u

i

)

⌘
.

3 Feature Noising in Linear-Chain CRFs

So far, we have developed a regularizer that works
for all log-linear models, but—in its current form—
is only practical for multiclass classification. We
now exploit the decomposable structure in CRFs to
define a new noising scheme which does not require
us to explicitly sum over all possible outputs y 2 Y .
The key idea will be to noise each local feature vec-
tor (which implicitly affects many y) rather than
noise each y independently.

Assume that the output y = (y1, . . . , y
T

) is a se-
quence of T tags. In linear chain CRFs, the feature
vector f decomposes into a sum of local feature vec-
tors g

t

:

f(y, x) =
TX

t=1

g

t

(y

t�1, yt, x), (11)

where g

t

(a, b, x) is defined on a pair of consecutive
tags a, b for positions t� 1 and t.

Rather than working with a score sy for each
y 2 Y , we define a collection of local scores
s = {s

a,b,t

}, for each tag pair (a, b) and posi-
tion t = 1, . . . , T . We consider noising schemes
which independently set g̃

t

(a, b, x) for each a, b, t.
Let ˜s = {s̃

a,b,t

} be the corresponding collection of
noised scores.

We can write the log-partition function of these
local scores as follows:

A(s) = log

X

y2Y
exp

(
TX

t=1

s

yt�1,yt,t

)
. (12)

The first derivative yields the edge marginals under
the model, µ

a,b,t

= p

✓

(y

t�1 = a, y

t

= b | x), and
the diagonal elements of the Hessian r2

A(s) yield
the marginal variances.

Now, following (6) and (7), we obtain the follow-
ing regularizer:

R

q
(✓, x) =

1

2

X

a,b,t

µ

a,b,t

(1� µ

a,b,t

)Var[s̃

a,b,t

],

(13)

where µ
a,b,t

(1� µ

a,b,t

) measures model uncertainty
about edge marginals, and Var[s̃

a,b,t

] is simply the
uncertainty due to noising. Again, minimizing the
regularizer means making confident predictions and
having stable scores under feature noise.

Computing partial derivatives So far, we have
defined the regularizer R

q
(✓, x) based on feature

noising. In order to minimize R

q
(✓, x), we need to

take its derivative.
First, note that logµ

a,b,t

is the difference of a re-
stricted log-partition function and the log-partition
function. So again by properties of its first deriva-
tive, we have:

rµ

a,b,t

= E
p✓(y|x,yt�1=a,yt=b)[f(y, x)] (14)

� E
p✓(y|x)[f(y, x)].

Local Noising

•  Global noising:

•  Local noising:

•  Can try to justify in restrospect

s = s̃
def
= ✓ · f̃(y, x)

s = s̃
def
= ✓ ·

TX

t=1

g̃(yt�1, yt, x)

The regularizer

•  The regularizer is:

•  For marginals:

•  And derivatives:

In this case, the contribution to the regularizer
from noising is Var[s̃y] =

P
j

�

2
✓

2
yj

.

• Dropout:
˜

f(y, x) = f(y, x) � z, where � takes the el-
ementwise product of two vectors. Here, z is
a vector with independent components which
has z

i

= 0 with probability �, z
i

=

1
1��

with
probability 1 � �. In this case, Var[s̃y] =

P
j

gj(x)2�
1��

✓

2
yj

.

• Multiplicative Gaussian:
˜

f(y, x) = f(y, x) � (1 + "), where
" ⇠ N (0, �

2
I

d⇥d

). Here, Var[s̃y] =P
j

g

j

(x)

2
�

2
✓

2
yj

. Note that under our second-
order approximation R

q
(✓, x), the multiplica-

tive Gaussian and dropout schemes are equiva-
lent, but they differ under the original regular-
izer R(✓, x).

2.1 Semi-supervised learning

A key observation (Wager et al., 2013) is that
the noising regularizer R (7), while involving a
sum over examples, is independent of the output
y. This suggests estimating R using unlabeled
data. Specifically, if we have n labeled examples
D = {x1, x2, . . . , xn} and m unlabeled examples
Dunlabeled = {u1, u2, . . . , un}, then we can define a
regularizer that is a linear combination the regular-
izer estimated on both datasets, with ↵ tuning the
tradeoff between the two:

R⇤(✓,D,Dunlabeled) (10)

def
=

n

n+ ↵m

⇣ nX

i=1

R(✓, x

i

) + ↵

mX

i=1

R(✓, u

i

)

⌘
.

3 Feature Noising in Linear-Chain CRFs

So far, we have developed a regularizer that works
for all log-linear models, but—in its current form—
is only practical for multiclass classification. We
now exploit the decomposable structure in CRFs to
define a new noising scheme which does not require
us to explicitly sum over all possible outputs y 2 Y .
The key idea will be to noise each local feature vec-
tor (which implicitly affects many y) rather than
noise each y independently.

Assume that the output y = (y1, . . . , y
T

) is a se-
quence of T tags. In linear chain CRFs, the feature
vector f decomposes into a sum of local feature vec-
tors g

t

:

f(y, x) =
TX

t=1

g

t

(y

t�1, yt, x), (11)

where g

t

(a, b, x) is defined on a pair of consecutive
tags a, b for positions t� 1 and t.

Rather than working with a score sy for each
y 2 Y , we define a collection of local scores
s = {s

a,b,t

}, for each tag pair (a, b) and posi-
tion t = 1, . . . , T . We consider noising schemes
which independently set g̃

t

(a, b, x) for each a, b, t.
Let ˜s = {s̃

a,b,t

} be the corresponding collection of
noised scores.

We can write the log-partition function of these
local scores as follows:

A(s) = log

X

y2Y
exp

(
TX

t=1

s

yt�1,yt,t

)
. (12)

The first derivative yields the edge marginals under
the model, µ

a,b,t

= p

✓

(y

t�1 = a, y

t

= b | x), and
the diagonal elements of the Hessian r2

A(s) yield
the marginal variances.

Now, following (6) and (7), we obtain the follow-
ing regularizer:

R

q
(✓, x) =

1

2

X

a,b,t

µ

a,b,t

(1� µ

a,b,t

)Var[s̃

a,b,t

],

(13)

where µ
a,b,t

(1� µ

a,b,t

) measures model uncertainty
about edge marginals, and Var[s̃

a,b,t

] is simply the
uncertainty due to noising. Again, minimizing the
regularizer means making confident predictions and
having stable scores under feature noise.

Computing partial derivatives So far, we have
defined the regularizer R

q
(✓, x) based on feature

noising. In order to minimize R

q
(✓, x), we need to

take its derivative.
First, note that logµ

a,b,t

is the difference of a re-
stricted log-partition function and the log-partition
function. So again by properties of its first deriva-
tive, we have:

rµ

a,b,t

= E
p✓(y|x,yt�1=a,yt=b)[f(y, x)] (14)

� E
p✓(y|x)[f(y, x)].

In this case, the contribution to the regularizer
from noising is Var[s̃y] =

P
j

�

2
✓

2
yj

.

• Dropout:
˜

f(y, x) = f(y, x) � z, where � takes the el-
ementwise product of two vectors. Here, z is
a vector with independent components which
has z

i

= 0 with probability �, z
i

=

1
1��

with
probability 1 � �. In this case, Var[s̃y] =

P
j

gj(x)2�
1��

✓

2
yj

.

• Multiplicative Gaussian:
˜

f(y, x) = f(y, x) � (1 + "), where
" ⇠ N (0, �

2
I

d⇥d

). Here, Var[s̃y] =P
j

g

j

(x)

2
�

2
✓

2
yj

. Note that under our second-
order approximation R

q
(✓, x), the multiplica-

tive Gaussian and dropout schemes are equiva-
lent, but they differ under the original regular-
izer R(✓, x).

2.1 Semi-supervised learning

A key observation (Wager et al., 2013) is that
the noising regularizer R (7), while involving a
sum over examples, is independent of the output
y. This suggests estimating R using unlabeled
data. Specifically, if we have n labeled examples
D = {x1, x2, . . . , xn} and m unlabeled examples
Dunlabeled = {u1, u2, . . . , un}, then we can define a
regularizer that is a linear combination the regular-
izer estimated on both datasets, with ↵ tuning the
tradeoff between the two:

R⇤(✓,D,Dunlabeled) (10)

def
=

n

n+ ↵m

⇣ nX

i=1

R(✓, x

i

) + ↵

mX

i=1

R(✓, u

i

)

⌘
.

3 Feature Noising in Linear-Chain CRFs

So far, we have developed a regularizer that works
for all log-linear models, but—in its current form—
is only practical for multiclass classification. We
now exploit the decomposable structure in CRFs to
define a new noising scheme which does not require
us to explicitly sum over all possible outputs y 2 Y .
The key idea will be to noise each local feature vec-
tor (which implicitly affects many y) rather than
noise each y independently.

Assume that the output y = (y1, . . . , y
T

) is a se-
quence of T tags. In linear chain CRFs, the feature
vector f decomposes into a sum of local feature vec-
tors g

t

:

f(y, x) =
TX

t=1

g

t

(y

t�1, yt, x), (11)

where g

t

(a, b, x) is defined on a pair of consecutive
tags a, b for positions t� 1 and t.

Rather than working with a score sy for each
y 2 Y , we define a collection of local scores
s = {s

a,b,t

}, for each tag pair (a, b) and posi-
tion t = 1, . . . , T . We consider noising schemes
which independently set g̃

t

(a, b, x) for each a, b, t.
Let ˜s = {s̃

a,b,t

} be the corresponding collection of
noised scores.

We can write the log-partition function of these
local scores as follows:

A(s) = log

X

y2Y
exp

(
TX

t=1

s

yt�1,yt,t

)
. (12)

The first derivative yields the edge marginals under
the model, µ

a,b,t

= p

✓

(y

t�1 = a, y

t

= b | x), and
the diagonal elements of the Hessian r2

A(s) yield
the marginal variances.

Now, following (6) and (7), we obtain the follow-
ing regularizer:

R

q
(✓, x) =

1

2

X

a,b,t

µ

a,b,t

(1� µ

a,b,t

)Var[s̃

a,b,t

],

(13)

where µ
a,b,t

(1� µ

a,b,t

) measures model uncertainty
about edge marginals, and Var[s̃

a,b,t

] is simply the
uncertainty due to noising. Again, minimizing the
regularizer means making confident predictions and
having stable scores under feature noise.

Computing partial derivatives So far, we have
defined the regularizer R

q
(✓, x) based on feature

noising. In order to minimize R

q
(✓, x), we need to

take its derivative.
First, note that logµ

a,b,t

is the difference of a re-
stricted log-partition function and the log-partition
function. So again by properties of its first deriva-
tive, we have:

rµ

a,b,t

= E
p✓(y|x,yt�1=a,yt=b)[f(y, x)] (14)

� E
p✓(y|x)[f(y, x)].

rµ

a,b,t

= E
p✓(y|x,yt�1=a,yt=b)[f(y, x)]� E

p✓(y|x)[f(y, x)]

Efficient computation

rµ

a,b,t

= E
p✓(y|x,yt�1=a,yt=b)[f(y, x)]� E

p✓(y|x)[f(y, x)]

•  For every a,b,t we need

•  Naïve computation is O(K4T2)
•  Can reduce to O(K3T2)

•  We provide a dynamic program to compute in
O(KT2), like normal forward backwards, except
need to do this for every feature

Feature group trick (Mengqiu)

•  Features that always appeared in the same
location all have the same conditional
expectations

•  Gives a 4x speedup, applicable to general CRFs

rµ

a,b,t

= E
p✓(y|x,yt�1=a,yt=b)[f(y, x)]� E

p✓(y|x)[f(y, x)]

CRF sequence tagging

•  CoNLL 2003 Named Entity Recognition
•  Stanford[ORG] is[O] near[O] Palo[LOC] Alto[LOC]

Dataset \ Settings None L2 Drop
CoNLL 2003 Dev 89.40 90.73 91.86

CoNLL 2003 Test 84.67 85.82 87.42

CRF sequence tagging

•  Dropout helps more on precision than recall

Precision Recall F
�=1

LOC 91.47% 91.12% 91.29
MISC 88.77% 81.07% 84.75
ORG 85.22% 84.08% 84.65
PER 92.12% 93.97% 93.04

Overall 89.84% 88.97% 89.40

(a) CoNLL dev. set with no regularization

Precision Recall F
�=1

92.05% 92.84% 92.44
90.51% 83.52% 86.87
88.35% 85.23% 86.76
93.12% 94.19% 93.65
91.36% 90.11% 90.73

(b) CoNLL dev. set with L2 reg-
ularization

Precision Recall F
�=1

93.59% 92.69% 93.14
93.99% 81.47% 87.28
92.48% 84.61% 88.37
94.81% 95.11% 94.96
93.85% 89.96% 91.86

(c) CoNLL dev. set with dropout
regularization

Tag Precision Recall F
�=1

LOC 87.33% 84.47% 85.87
MISC 78.93% 77.12% 78.02
ORG 78.70% 79.49% 79.09
PER 88.82% 93.11% 90.92

Overall 84.28% 85.06% 84.67

(d) CoNLL test set with no regularization

Precision Recall F
�=1

87.96% 86.13% 87.03
77.53% 79.30% 78.41
81.30% 80.49% 80.89
90.30% 93.33% 91.79
85.57% 86.08% 85.82

(e) CoNLL test set with L2 reg-
ularization

Precision Recall F
�=1

86.26% 87.74% 86.99
81.52% 77.34% 79.37
88.29% 81.89% 84.97
92.15% 92.68% 92.41
88.40% 86.45% 87.42

(f) CoNLL test set with dropout
regularization

Table 6: CoNLL NER results broken down by tags and by precision, recall, and F
�=1. Top: development

set, bottom: test set performance.

References
Yaser S. Abu-Mostafa. 1990. Learning from hints in

neural networks. Journal of Complexity, 6(2):192–
198.

Chris M. Bishop. 1995. Training with noise is equiva-
lent to Tikhonov regularization. Neural computation,
7(1):108–116.

Robert Bryll, Ricardo Gutierrez-Osuna, and Francis
Quek. 2003. Attribute bagging: improving accuracy
of classifier ensembles by using random feature sub-
sets. Pattern recognition, 36(6):1291–1302.

Chris J.C. Burges and Bernhard Schölkopf. 1997. Im-
proving the accuracy and speed of support vector ma-
chines. In Advances in Neural Information Processing
Systems, pages 375–381.

Brad Efron and Robert Tibshirani. 1993. An Introduction
to the Bootstrap. Chapman & Hall, New York.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs sam-
pling. In Proceedings of the 43rd annual meeting of
the Association for Computational Linguistics, pages
363–370.

Yves Grandvalet and Yoshua Bengio. 2005. Entropy
regularization. In Semi-Supervised Learning, United
Kingdom. Springer.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R. Salakhutdinov.
2012. Improving neural networks by preventing

co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Feng Jiao, Shaojun Wang, Chi-Hoon Lee, Russell
Greiner, and Dale Schuurmans. 2006. Semi-
supervised conditional random fields for improved se-
quence segmentation and labeling. In Proceedings of
the 44th annual meeting of the Association for Com-
putational Linguistics, ACL-44, pages 209–216.

Thorsten Joachims. 1999. Transductive inference for
text classification using support vector machines. In
Proceedings of the International Conference on Ma-
chine Learning, pages 200–209.

Wei Li and Andrew McCallum. 2005. Semi-supervised
sequence modeling with syntactic topic models. In
Proceedings of the 20th national conference on Arti-
ficial Intelligence - Volume 2, AAAI’05, pages 813–
818.

Gideon S. Mann and Andrew McCallum. 2007. Sim-
ple, robust, scalable semi-supervised learning via ex-
pectation regularization. In Proceedings of the Inter-
national Conference on Machine Learning.

Kiyotoshi Matsuoka. 1992. Noise injection into inputs
in back-propagation learning. Systems, Man and Cy-
bernetics, IEEE Transactions on, 22(3):436–440.

Slav Petrov and Ryan McDonald. 2012. Overview of the
2012 shared task on parsing the web. Notes of the First
Workshop on Syntactic Analysis of Non-Canonical
Language (SANCL).

Precision Recall F
�=1

LOC 91.47% 91.12% 91.29
MISC 88.77% 81.07% 84.75
ORG 85.22% 84.08% 84.65
PER 92.12% 93.97% 93.04

Overall 89.84% 88.97% 89.40

(a) CoNLL dev. set with no regularization

Precision Recall F
�=1

92.05% 92.84% 92.44
90.51% 83.52% 86.87
88.35% 85.23% 86.76
93.12% 94.19% 93.65
91.36% 90.11% 90.73

(b) CoNLL dev. set with L2 reg-
ularization

Precision Recall F
�=1

93.59% 92.69% 93.14
93.99% 81.47% 87.28
92.48% 84.61% 88.37
94.81% 95.11% 94.96
93.85% 89.96% 91.86

(c) CoNLL dev. set with dropout
regularization

Tag Precision Recall F
�=1

LOC 87.33% 84.47% 85.87
MISC 78.93% 77.12% 78.02
ORG 78.70% 79.49% 79.09
PER 88.82% 93.11% 90.92

Overall 84.28% 85.06% 84.67

(d) CoNLL test set with no regularization

Precision Recall F
�=1

87.96% 86.13% 87.03
77.53% 79.30% 78.41
81.30% 80.49% 80.89
90.30% 93.33% 91.79
85.57% 86.08% 85.82

(e) CoNLL test set with L2 reg-
ularization

Precision Recall F
�=1

86.26% 87.74% 86.99
81.52% 77.34% 79.37
88.29% 81.89% 84.97
92.15% 92.68% 92.41
88.40% 86.45% 87.42

(f) CoNLL test set with dropout
regularization

Table 6: CoNLL NER results broken down by tags and by precision, recall, and F
�=1. Top: development

set, bottom: test set performance.

References
Yaser S. Abu-Mostafa. 1990. Learning from hints in

neural networks. Journal of Complexity, 6(2):192–
198.

Chris M. Bishop. 1995. Training with noise is equiva-
lent to Tikhonov regularization. Neural computation,
7(1):108–116.

Robert Bryll, Ricardo Gutierrez-Osuna, and Francis
Quek. 2003. Attribute bagging: improving accuracy
of classifier ensembles by using random feature sub-
sets. Pattern recognition, 36(6):1291–1302.

Chris J.C. Burges and Bernhard Schölkopf. 1997. Im-
proving the accuracy and speed of support vector ma-
chines. In Advances in Neural Information Processing
Systems, pages 375–381.

Brad Efron and Robert Tibshirani. 1993. An Introduction
to the Bootstrap. Chapman & Hall, New York.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs sam-
pling. In Proceedings of the 43rd annual meeting of
the Association for Computational Linguistics, pages
363–370.

Yves Grandvalet and Yoshua Bengio. 2005. Entropy
regularization. In Semi-Supervised Learning, United
Kingdom. Springer.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R. Salakhutdinov.
2012. Improving neural networks by preventing

co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Feng Jiao, Shaojun Wang, Chi-Hoon Lee, Russell
Greiner, and Dale Schuurmans. 2006. Semi-
supervised conditional random fields for improved se-
quence segmentation and labeling. In Proceedings of
the 44th annual meeting of the Association for Com-
putational Linguistics, ACL-44, pages 209–216.

Thorsten Joachims. 1999. Transductive inference for
text classification using support vector machines. In
Proceedings of the International Conference on Ma-
chine Learning, pages 200–209.

Wei Li and Andrew McCallum. 2005. Semi-supervised
sequence modeling with syntactic topic models. In
Proceedings of the 20th national conference on Arti-
ficial Intelligence - Volume 2, AAAI’05, pages 813–
818.

Gideon S. Mann and Andrew McCallum. 2007. Sim-
ple, robust, scalable semi-supervised learning via ex-
pectation regularization. In Proceedings of the Inter-
national Conference on Machine Learning.

Kiyotoshi Matsuoka. 1992. Noise injection into inputs
in back-propagation learning. Systems, Man and Cy-
bernetics, IEEE Transactions on, 22(3):436–440.

Slav Petrov and Ryan McDonald. 2012. Overview of the
2012 shared task on parsing the web. Notes of the First
Workshop on Syntactic Analysis of Non-Canonical
Language (SANCL).

SANCL POS Tagging

•  Test set difference statistically significant for
newsgroups and reviews

computational efficiency and prediction accuracy.

5.2 CRF Experiments
We evaluate the quadratic dropout regularizer in
linear-chain CRFs on two sequence tagging tasks:
the CoNLL 2003 NER shared task (Tjong Kim Sang
and De Meulder, 2003) and the SANCL 2012 POS
tagging task (Petrov and McDonald, 2012) .

The standard CoNLL-2003 English shared task
benchmark dataset (Tjong Kim Sang and De Meul-
der, 2003) is a collection of documents from
Reuters newswire articles, annotated with four en-
tity types: Person, Location, Organization, and
Miscellaneous. We predicted the label sequence
Y = {LOC, MISC, ORG, PER, O}T without con-
sidering the BIO tags.

For training the CRF model, we used a compre-
hensive set of features from Finkel et al. (2005) that
gives state-of-the-art results on this task. A total
number of 437906 features were generated on the
CoNLL-2003 training dataset. The most important
features are:
• The word, word shape, and letter n-grams (up to

6gram) at current position
• The prediction, word, and word shape of the pre-

vious and next position
• Previous word shape in conjunction with current

word shape
• Disjunctive word set of the previous and next 4

positions
• Capitalization pattern in a 3 word window
• Previous two words in conjunction with the word

shape of the previous word
• The current word matched against a list of name

titles (e.g., Mr., Mrs.)
The F

�=1 results are summarized in Table 4. We
obtain a 1.6% and 1.1% absolute gain on the test and
dev set, respectively. Detailed results that are broken
down by precision and recall for each tag is shown
in Table 6.

For the SANCL (Petrov and McDonald, 2012)
POS tagging task, we used the same CRF framework
with a much simpler set of features
• word unigrams: w�1, w0, w1

• word bigram: (w�1, w0) and (w0, w1)
We obtained a small but consistent improvement

using the quadratic dropout regularizer in (13) over
the L2-regularized CRFs baseline.

F
�=1 None L2 Drop
Dev 89.40 90.73 91.86
Test 84.67 85.82 87.42

Table 4: CoNLL summary of results. None: no reg-
ularization, Drop: quadratic dropout regularization
(13) described in this paper.

F
�=1 None L2 Drop

newsgroups

Dev 91.34 91.34 91.47
Test 91.44 91.44 91.81

reviews

Dev 91.97 91.95 92.10
Test 90.70 90.67 91.07

answers

Dev 90.78 90.79 90.70
Test 91.00 90.99 91.09

Table 5: SANCL POS tagging F

�=1 scores for the 3
official evaluation sets.

Although the difference seems small, the per-
formance differences on the test sets of reviews
and newsgroups are statistically significant at the
0.1% level according to the paired bootstrap resam-
pling method of 2000 iterations (Efron and Tibshi-
rani, 1993).

6 Conclusion

We have presented a new regularizer for learning
log-linear models such as multiclass logistic regres-
sion and conditional random fields. This regularizer
is based on a second-order approximation of fea-
ture noising schemes, and attempts to favor mod-
els that predict confidently and are robust to noise
in the data. In order to apply our method to CRFs,
we tackle the key challenge of dealing with feature
correlations that arise in the structured prediction
setting in several ways. In addition, we show that
the regularizer can be applied naturally in the semi-
supervised setting. Finally, we applied our method
to a range of different datasets and demonstrate con-
sistent gains over standard L2 regularization. Inves-
tigating how to better optimize this non-convex reg-
ularizer online and convincingly scale it to the semi-
supervised setting seem to be promising future di-
rections.

Summary

•  Part 0: Some backgrounds

•  Part 1: Dropout as adaptive regularization
•  with applications to semi-supervised learning

•  joint work with Stefan Wager and Percy

•  Part 2: Applications to structured prediction
using CRFs
•  when the log-partition function cannot be easily

computed

•  joint work with Mengqiu, Chris, Percy and Stefan
Wager

References

•  Our arXiv paper [Wager et al., 2013] has more
details, including the relation to AdaGrad

•  Our EMNLP paper [Wang et al., 2013] extends
this framework to structured prediction

•  Our ICML paper [Wang and Manning, 2013]
applies a related technique to neural networks
and provides some negative examples

Dropout vs. L2

•  Can be much better than all settings of L2

•  Part of the gain comes from normalization

Dataset K None L2 Drop +Test
CoNLL 5 78.03 80.12 80.90 81.66
20news 20 81.44 82.19 83.37 84.71
RCV14 4 95.76 95.90 96.03 96.11
R21578 65 92.24 92.24 92.24 92.58

TDT2 30 97.74 97.91 98.00 98.12

Table 2: Classification performance and transduc-
tive learning results on some standard datasets.
None: use no regularization, Drop: quadratic ap-
proximation to the dropout noise (7), +Test: also use
the test set to estimate the noising regularizer (10).

5.1.1 Semi-supervised Learning with Feature
Noising

In the transductive setting, we used test data
(without labels) to learn a better regularizer. As an
alternative, we could also use unlabeled data in place
of the test data to accomplish a similar goal; this
leads to a semi-supervised setting.

To test the semi-supervised idea, we use the same
datasets as above. We split each dataset evenly into
3 thirds that we use as a training set, a test set and an
unlabeled dataset. Results are given in Table 3.

In most cases, our semi-supervised accuracies are
lower than the transductive accuracies given in Table
2; this is normal in our setup, because we used less
labeled data to train the semi-supervised classifier
than the transductive one.4

5.1.2 The Second-Order Approximation
The results reported above all rely on the ap-

proximate dropout regularizer (7) that is based on a
second-order Taylor expansion. To test the validity
of this approximation we compare it to the Gaussian
method developed by Wang and Manning (2013) on
a two-class classification task.

We use the 20-newsgroups alt.atheism vs
soc.religion.christian classification task;
results are shown in Figure 2. There are 1427 exam-

4The CoNNL results look somewhat surprising, as the semi-
supervised results are better than the transductive ones. The
reason for this is that the original CoNLL test set came from a
different distributions than the training set, and this made the
task more difficult. Meanwhile, in our semi-supervised experi-
ment, the test and train sets are drawn from the same distribu-
tion and so our semi-supervised task is actually easier than the
original one.

Dataset K L2 Drop +Unlabeled
CoNLL 5 91.46 91.81 92.02
20news 20 76.55 79.07 80.47
RCV14 4 94.76 94.79 95.16
R21578 65 90.67 91.24 90.30

TDT2 30 97.34 97.54 97.89

Table 3: Semisupervised learning results on some
standard datasets. A third (33%) of the full dataset
was used for training, a third for testing, and the rest
as unlabeled.

10
−6

10
−4

10
−2

10
0

10
2

0.78

0.8

0.82

0.84

0.86

0.88

0.9

L
2
 regularization strength (λ)

A
cc

u
ra

cy

L2 only
L2+Gaussian dropout
L2+Quadratic dropout

Figure 2: Effect of � in �k✓k22 on the testset perfor-
mance. Plotted is the test set accuracy with logis-
tic regression as a function of � for the L2 regular-
izer, Gaussian dropout (Wang and Manning, 2013)
+ additional L2, and quadratic dropout (7) + L2 de-
scribed in this paper. The default noising regularizer
is quite good, and additional L2 does not help. No-
tice that no choice of � in L2 can help us combat
overfitting as effectively as (7) without underfitting.

ples with 22178 features, split evenly and randomly
into a training set and a test set.

Over a broad range of � values, we find that
dropout plus L2 regularization performs far better
than using just L2 regularization for any value of
�. We see that Gaussian dropout appears to per-
form slightly better than the quadratic approxima-
tion discussed in this paper. However, our quadratic
approximation extends easily to the multiclass case
and to structured prediction in general, while Gaus-
sian dropout does not. Thus, it appears that our ap-
proximation presents a reasonable trade-off between

Example: linear least squares

•  The loss function is

•  Let where ,

•  The total regularizer is

•  This is just L2 applied after data normalization

X = ✓ · x̃ x̃j = 2zjxj

R

q(✓) =
1

2

X

j

✓

2
j

X

i

x

(i)2
j

f(✓ · x) = 1/2(✓ · x� y)2

E[f(X)] = f(E[X]) +
f

00(E[X])

2
Var[X]

= 1/2(✓ · x� y)2 + 1/2
X

j

x

2
j✓

2
j

zj = Bernoulli(0.5)

Quantitative results on IMDB

Method \ Settings Supervised Semi-sup.

MNB - unigrams with SFE
[Su et al., 2011]

83.62 84.13

MNB – bigrams 86.63 86.98

Vectors for sentiment analysis
[Maas et al., 2011]

88.33 88.89

NBSVM – bigrams
[Wang and Manning, 2012]

91.22 -

This work: dropout + unigrams 87.78 89.52

This work: dropout + bigrams 91.31 91.98

