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) The basics of dropout training

* Introduced by Hinton et al. in “Improving neural
networks by preventing co-adaptation of feature
detectors”

 For each example, randomly select features
e zero them
e« compute the gradient, make an update
e repeat




Empirically successful

 Dropout is important in some recent successes

« won the ImageNet challenge [Krizhevsky et al.,
2012]

« won the Merck challenge [Dahl et al., 2012]

* Improved performance on standard datasets
 images: MNIST, CIFAR, ImageNet, etc.

« document classification: Reuters, IMDB, Rotten
Tomatoes, etc.

e speech: TIMIT, GlobalPhone, etc.




Ley Lots of related works already

Variants
 DropConnect [Wan et al., 201 3]
« Maxout networks [Goodfellow et al., 201 3]

Analytical integration
* Fast Dropout [Wang and Manning, 201 3]

 Marginalized Corrupted Features [van der
Maaten et al., 201 3]

Many other works report empirical gains
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) Theoretical understanding?

 Dropout as adaptive regularization
e feature noising -> interpretable penalty term

Loss( Dropout(data) )
= Loss(data)+Regularizer(data)

 Semi-supervised learning
« feature dependent, label independent regularizer:

Regularizer(Unlabeled data)



Lty Dropout for Log-linear Models

* Log likelihood (e.g., softmax classification):
log p(y|z;0) = 216, — A(x'9)
0 =1601,0o,...,0k]
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Le) Dropout for Log-linear Models

 We can rewrite the dropout log-likelihood

Ellogp(yl7:0)] =  E[z70,]  —E[A(Z"0)]
log p(y|x;0) = 10, —A(z'9)
Ellogp(y|7;0)] = logp(ylz;0) —(E[A(Z"6)] — A(z"0))
-Loss(Dro;)rout(data)) -Los;(:iata) Regular;zrer(data)

 Dropout reduces to a regularizer
R(9,x) =E[A(z10)] — A(z'9)



b)) Second-order delta method

Take the Taylor expansion
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L) Second-order delta method

Take the Taylor expansion

A(S) ~ A(So) -+ (S — sO)TA’(SO) + (3 - SO)T AH(SO)
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Substitute s = § ¥ 77, sq = E[3]

Take expectations to get the quadratic
approximation:

RY(0, z) = %]E[(:é ) V2 A(s)(5 — 8)]
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L) Example: logistic regression

« The quadratic approximation

1
RY(0,x) = §A"(:UT¢9)Var[§3T9]

« A”(z'0) =p(1—p) represents uncertainty:
p = p(ylz;0) = (1 +exp(—yz'6))~"

» Var[i70] =) 6727 is L,-regularization after

J

normalizing the data




i) The regularizers

e Dropout on Linear Regression

R(9) = % > 07> i)
e Dropout on Logistic R;gres;ion

R1(0) = 530023 i1 — )l
e Multiclass, CRFs [Wan; et aIZ., 2013]




ey Dropout intuition

1 i
Rq(e) — 5 Z (9]2 sz(l — pz)il?g )2
7 )

 Regularizes “rare” features less, like AdaGrad:
there is actually a more precise connection
[Wager et al., 201 3]

* Big weights are okay if they contribute only to
confident predictions

 Normalizing by the diagonal Fisher information



) Semi-supervised Learning

 These regularizers are label-independent
* but can be data adaptive in interesting ways
e labeled dataset D = {z1,x2,...,2,}
 unlabeled data Dunlabeled = {U1, U2,y ..., Uy |

 We can better estimate the reqgularizer
R* (9, D, Dunlabeled)

dof - +”&m (; R(0,z;) + Z_; R(6, u))

for some tunable .




L) Semi-supervised intuition

Z (92 sz (7/)2

e Like other semi- superwsed methods:

e transductive SVMs [Joachims, 1999]

e entropy regularization [Grandvalet and Bengio,
2005]

« EM: guess a label [Nigam et al., 2000]

« want to make confident predictions on the
unlabeled data

e Get a better estimate of the Fisher information




Ly IMDB dataset [Maas et al., 2011]

« 25k examples of positive reviews
« 25k examples of negative reviews
« Half for training and half for testing

50k unlabeled reviews also containing neutral
reviews

300k sparse unigram features
 ~5 million sparse bigram features




Experiments: semi-supervised

 Add more unlabeled data (10k labeled)
improves performance
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Experiments: semi-supervised

 Add more labeled data (40k unlabeled)
improves performance
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Ly Quantitative results on IMDB

Method \ Settings Supervised | Semi-sup.

MNB - unigrams with SFE 83.62 84.13
[Su et al., 2011]

Vectors for sentiment analysis 88.33 88.89
[Maas et al., 2011]

This work: dropout + unigrams 87.78 89.52

This work: dropout + bigrams 91.31 91.98




Experiments: other datasets

Dataset\ Settings L, ___|Drop_+Unibl_

Subjectivity [Peng and Lee, 88.96 90.85 91.48
2004]

Rotten Tomatoes [Peng and 73.49 7518 76.56
Lee, 2009]

20-newsgroups 82.19 83.37 84.71

CoNLL-2003 80.12 80.90 81.66
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/ Log-linear structured prediction

A vector of scores s = (s1,...,5)y|) Sy =[f(y,z) 0

e The likelihood is:
p(y | x;0) = exp{sy — A(s)}

A(s) = log Z exp{sy }

» |Y| might be really huge!




) What about structured prediction?

e Recall that in logistic regression:

1 )2
RIO) =567 > pill—pi)a)
J ()

 What if we cannot easily compute the log-
partition function A? and its second derivatives?




) The original setup

Take the Taylor expansion

A(S) ~ A(So) -+ (S — sO)TA’(SO) + (3 - SO)T AH(SO)

(s — so)

Substitute s = § < 77, so = E[3]
Take expectations to get the quadratic
approximation:

RY(0, z) = %]E[(:é ) V2 A(s)(5 — 8)]

_ %tr(VQA(S)COV(g))




>J The structured prediction setup

Take the Taylor expansion

A(s

Su
Ta
ap

7 A" (50)

)~ A(sg) + (s — SO)TA’(SO) + (s — so) (s — so)

. ~ def ~ ~
hstitute s =5 = 0 - f(y,z), so=LE|s]
e expectations to get the quadratic
proximation:

RY(0, z) = %]E[(:é ) V2 A(s)(5 — 8)]

_ %tr(VQA(S)COV(g))



/) Use the independence structure

 Depends on the underlying graphical model

e We assume we can do exact inference via
message passing (e.g. clique tree)

e E.g. Linear-chain CREF:

T
= th(yt—hyt,x)
t=1
IOgZeXp {Zsyt 1,Yt,t }

yey t=1



Local Noising

* Global noising:
s =8 = 0~f(y,x)

* Local noising: -
~ def ~
s=5<0-) g1,y )

e Can try to justify in restrospect




) The reqgularizer

 The reqgularizer iS'

R0, z) Zuabt — Ha,b,t) Var|Sq ]

_ abt
* For marginals:

Ha,bt = p@(yt—l — a, Yt :‘b ’ ZE)
« And derivatives:

v,UJCL,b,t — Epg (y|z,yt—1=a,y:=b) [f(yn 'CB)] _ Epe(y|ac) [f(Y7 ZIZ‘)]




) Efficient computation

 For every a,b,t we need
Vitabt = Bpgyley—1=a,y=0) lf (¥, 2)] = Epy(y)a) [f (¥ 2)]

* Naive computation is O(K4T?)
e Can reduce to O(K3T?)

« We provide a dynamic program to compute in
O(KT?), like normal forward backwards, except
need to do this for every feature




Feature group trick (Mengqiu)

v,LLa,,b,t — Epg (y|z,y1—1=a,y:=Db) [f(Y7 ZE)] _ Epg(y|a:) [f(Y7 CE‘)]

* Features that always appeared in the same
location all have the same conditional
expectations

* Gives a 4x speedup, applicable to general CRFs



Ly CRF sequence tagging

« CoNLL 2003 Named Entity Recognition
e Stanford[ORG] is[O] near[O] Palo[LOC] Alto[LOC(C]

Dataset | Settings ______|None |L, __Drop _

CoNLL 2003 Dev 89.40 90.73 91.86

CoNLL 2003 Test 84.67 85.82 87.42



CRF sequence tagging

 Dropout helps more on precision than recall

Tag | Precision Recall Fg—; Precision  Recall Fpg—4
LOC 87.96% 86.13% 87.03 86.26% 87.74% 86.99
MISC 77.53% 79.30% 78.41 81.52%  77.34% 719.37
ORG 81.30% 80.49% 80.89 88.29% 81.89% 84.97
PER | 90.30% 93.33% 91.79 92.15% 92.68% 92.41
Overall 85.57%  86.08% 85.82 88.40% 86.45% 87.42
(e) CoNLL test set with Lo reg- (f) CoNLL test set with dropout
ularization regularization




SANCL POS Tagging

« Test set difference statistically significant for
newsgroups and reviews

Fs—1 | None Lo Drop
newsgroups
Dev | 91.34 91.34 9147
Test | 91.44 91.44 91.81
reviews

Dev | 91.97 9195 92.10
Test | 90.70 90.67 91.07
answers

Dev | 90.78 90.79 90.70
Test | 91.00 90.99 91.09




) Summary

e Part O0: Some backgrounds

 Part 1: Dropout as adaptive regularization
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e joint work with Stefan Wager and Percy
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Wager




Le) References

e QOur arXiv paper [Wager et al., 2013] has more
details, including the relation to AdaGrad

e Our EMNLP paper [Wang et al., 2013] extends
this framework to structured prediction

e QOur ICML paper [Wang and Manning, 201 3]
applies a related technique to neural networks
and provides some negative examples



e Can be much better than all settings of L,
* Part of the gain comes from normalization
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Ly Example: linear least squares

e The loss functionis f(6-z) =1/2(0 - x — y)?
Let X =60 -2 where z; = 22,2, z; = Bernoulli(0.5)

| S (EX])

ELf(X)] = fF(E[X])

=1/2(0 -2 —y)* + 1/22@?932-
J

Var| X]

The total regularizer is
1 5 (1)2
RI(0) = 5 Zej ij
] ()

e This is just L2 applied after data normalization




Ly Quantitative results on IMDB

Method \ Settings Supervised | Semi-sup.
MNB - unigrams with SFE 83.62 84.13
[Su et al., 2011]

MNB — bigrams 86.63 86.98
Vectors for sentiment analysis 88.33 88.89
[Maas et al., 2011]

NBSVM — bigrams 91.22 -
[Wang and Manning, 2012]

This work: dropout + unigrams 87.78 89.52

This work: dropout + bigrams 91.31 91.98




