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Abstract

Computational semantics has long been seen as a field divided between
logical and statistical approaches, but this divide is rapidly eroding, with
the development of statistical models that learn compositional semantic
theories from corpora and databases. This paper presents a simple dis-
criminative learning framework for defining such models and relating them
to logical theories. Within this framework, we discuss the task of learn-
ing to map utterances to logical forms (semantic parsing) and the task of
learning from denotations with logical forms as latent variables. We also
consider models that use distributed (e.g., vector) representations rather
than logical ones, showing that these can be seen as part of the same
overall framework for understanding meaning and structural complexity.

Keywords compositionality, logical forms, distributed representations, se-
mantic parsing, discriminative learning, recursive neural networks

1 Introduction

Computational semantics often seems like a field divided by methodologies and
near-term goals (Cooper 2012). Logical approaches rely on techniques from
proof theory and model-theoretic semantics, they have strong ties to linguistic
semantics, and they are concerned primarily with inference, ambiguity, vague-
ness, and compositional interpretation of full syntactic parses (Blackburn & Bos
2003, 2005; van Eijck & Unger 2010). In contrast, statistical approaches derive
their tools from algorithms and optimization, and they tend to focus on word
meanings and broad notions of semantic content (Landauer et al. 2007; Tur-
ney & Pantel 2010). The two types of approaches share the long-term vision of
achieving deep natural language understanding, but their day-to-day differences
can make them seem unrelated and even incompatible.

With the present paper, we seek to show that the distinction between logical
and statistical approaches is rapidly disappearing, with the development of mod-
els that can learn the conventional aspects of natural language meaning from
corpora and databases. These models interpret rich linguistic representations
in a compositional fashion, and they offer novel perspectives on foundational
issues like ambiguity, inference, and grounding. The fundamental question for
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these approaches is what kinds of data and models are needed for effective learn-
ing. Addressing this question is a prerequisite for implementing robust systems
for natural language understanding, and the answers can inform psychological
models of language acquisition and language processing.

The leading players in our discussion are compositionality and machine learn-
ing. After describing our view of linguistic objects (section 2), we introduce these
two players (section 3). Although they come from different scientific worlds, we
show that they are deeply united around the concepts of generalization, mean-
ing, and structural complexity. The bulk of the paper is devoted to showing
how learning-based theories of semantics bring the two worlds together. Specifi-
cally, compositionality characterizes the recursive nature of the linguistic ability
required to generalize to a creative capacity, and learning details the conditions
under which such an ability can be acquired from data. We substantiate this
connection first for models in which the semantic representations are logical
forms (section 4) and then for models in which the semantic representations
are distributed (e.g., vectors; section 5). Historically, distributional approaches
have been more closely associated with learning, but we show, building on much
previous literature, that both types of representations can be learned.

Our focus is on learning general theories of semantics, so we develop the
ideas using formal tools that are familiar in linguistics, computer science, and
engineering, and that are relatively straightforward to present in limited space:
context-free grammars, simple logical representations, linear models, and first-
order optimization algorithms. This focus means that we largely neglect many
important, relevant developments in semantic representation (de Marneffe et al.
2006; MacCartney & Manning 2009; van Eijck & Unger 2010; Palmer et al.
2010), semantic interpretation (Dagan et al. 2006; Sauŕı & Pustejovsky 2009),
and structured prediction (Baklr et al. 2010; Smith 2011). It’s our hope, though,
that our discussion suggests new perspectives on these efforts. (For more general
introductions to data-driven approaches to computational semantics, see Ng &
Zelle 1997; Jurafsky & Martin 2009: §IV.)

2 Linguistic objects

We model linguistic objects as triples 〈u, s, d〉, where u is an utterance, s is
a semantic representation, and d is the denotation of s. We use puq for
the translation of syntactic expression u into its semantic representation, and
we use JsK for the denotation of semantic representation s. The goal of the next
few subsections is to more fully articulate what these objects are like and how
they relate to each other.

Table 1 describes a simple interpreted grammar for these triples 〈u, s, d〉, and
table 2 provides some examples. This grammar provides a (very limited) theory
of basic English arithmetic descriptions like “two times minus one”. Though the
grammar captures an unusual fragment of language, it is an excellent vehicle for
defining semantic theories and exploring learning-based perspectives on them,
so we will rely on it for concrete illustrations throughout this paper.
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Syntax Semantic representation Denotation

N → one 1 1
N → two 2 2

...
...

...
R → plus + the R such that R(x, y) = x+ y
R → minus − the R such that R(x, y) = x− y
R → times × the R such that R(x, y) = x ∗ y
S → minus ¬ the f such that f(x) = −x
N → S N pSqpNq JpSqK(JpNqK)
N → NL R NR (pRq pNLq pNRq) JpRqK(JpNLqK, JpNRqK)

Table 1: An illustrative grammar. puq is the translation of syntactic expression
u, and JsK is the denotation of semantic representation s. N is the CFG’s start
symbol. In the final rule, the L and R subscripts are meta-annotations to ensure
deterministic translation and interpretation.

Utterance Semantic representation Denotation

A. seven minus five (− 7 5) 2
B. minus three plus one (+ ¬3 1) −2
C. two minus two times two (× (− 2 2) 2) 0
D. two plus three plus four (+ 2 (+ 3 4)) 9

Table 2: Examples derived from the grammar in table 1.

2.1 Utterances

We model each utterance as a sequence of strings (words). These can be thought
of as derived from the output of the context-free grammar (CFG) given in the
left column of table 1. This unstructured starting point helps keep the focus
on semantics. However, relatively little hinges on this choice; for example,
while using syntactic trees, dependency graphs, or shallow parses would affect
the precise mapping to semantic representations and on to denotations, the
substantive connections with the models we discuss below would remain the
same.

2.2 Semantic representations

In linguistics, semantic representations are generally logical forms: expressions
in a fully specified, unambiguous artificial language. The grammar in table 1
adopts such a view, defining semantic representations with a logical language
that has constant symbols for numbers and relations and uses juxtaposition and
bracketing to create complex expressions. In the literature, one encounters a
variety of different formalisms — for example, lambda calculi (Carpenter 1997)
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or first-order fragments thereof (Bird et al. 2009), natural logics (MacCartney
& Manning 2009; Moss 2009), diagrammatic languages (Kamp & Reyle 1993),
programming languages (Blackburn & Bos 2005), robot controller languages
(Matuszek et al. 2012b), and database query languages (Zelle & Mooney 1996).

A given utterance might be consistent with multiple logical forms in our
grammar, creating ambiguity. For instance, the utterance in line B of table 2
also maps to the logical form ¬(+ 3 1), which denotes −4. Intuitively, this
happens if “minus” is parsed as taking scope over the addition expression to its
right. Similarly, utterance C can be construed with “two times two” as a unit,
leading to the logical form (− 2 (× 2 2)), which denotes −2. Utterance D
also has an alternative analysis as (+ (+ 2 3) 4), but this ambiguity is spu-
rious in the sense that it has the same denotation as the one in table 1. Our
grammar also has one lexical ambiguity — “minus” can pick out a unary or
binary relation — but this is immediately resolved in complex structures.

In semantic theories aligned with generative syntax (see Heim & Kratzer
1998), the logical form is an abstract syntactic object that might differ signif-
icantly from the surface syntax, especially with regard to the relative scope of
semantic operators (Reinhart 1997; Szabolcsi 2009). For example, the phrase
“All that glitters is not gold” has two readings. The surface-scope reading
has logical form ∀x ((glitterx) → ¬(goldx)), which says that no glittering
thing is gold. The inverse-scope reading reverses the order of negation and
the universal quantifier, leading to logical form ¬∀x ((glitterx) → (goldx)),
which makes the weaker statement that not all glittering things are gold. In
this case, world knowledge and other pragmatic factors favor the inverse-scope
reading, though general interpretive preferences seem to broadly favor surface
scope. Our grammar doesn’t have the sort of operators that could create these
ambiguities, so we set them aside; for discussion of how to characterize and
learn scopal preferences from data, see Higgins & Sadock 2003; AnderBois et al.
2012; Liang et al. 2013.

The term ‘logical form’ is often used as a synonym for ‘semantic representa-
tion’, but we keep them separate. In section 5, we discuss theories in which the
semantic representations can be vectors and matrices. These are not obviously
‘logical’, but they can encode information that is expressed directly by logical
forms.

2.3 Denotations

Like many scientific fields, semantics does not provide a definitive verdict on
the true nature of the objects it is investigating. Most theories follow Lewis’s
(1970: 22) dictum: “In order to say what a meaning is, we may first ask what
a meaning does, and then find something that does that”. For the most part,
since Montague (1970), linguists have relied on higher-order functional models
to provide denotations for their semantic representations. In an idealized sense,
these structures permit a rigorous reconstruction of core semantic concepts like
truth and entailment, thereby behaving in some sense like meanings behave,
though they immediately raise questions about computational complexity and

4



mental representation (Partee 1980, 1981; Jackendoff 1992, 1997).
The computational models discussed below are similarly flexible about the

nature of denotations. They can come from a database, a corpus, a physical
environment, or a cognitive model — whatever is appropriate for the task at
hand. For example, the grammar in table 1 says that denotations are numbers,
but one can take other perspectives, perhaps viewing logical forms as programs
and denotations as the result of executing those programs. In that case, the
denotations might be events in the physical world, symbolic representations in
a lower-level language, or even symbolic representations in the same language
used for logical forms, thereby blurring the distinction between representation
and denotation (Katz 1972, 1996; Kripke 1975; Chierchia & Turner 1988).

We assume that each logical form has a unique denotation, so that the in-
terpretation function J·K is truly a function from logical forms to denotations.
Vagueness complicates this assumption (Kennedy 2011). In the presence of
vagueness, a given semantic representation s can be compatible with multiple
(perhaps infinitely many) denotations. Vagueness exists in all aspects of the
lexicon and projects in semantic composition, creating vague meanings for com-
plex phrases. It is the rule in natural language, not the exception, and it is
arguably crucial for the flexible, expressive nature of such languages, allowing
fixed expressions to make different distinctions in different contexts and help-
ing people to communicate under uncertainty about the world (Kamp & Partee
1995; Graff 2000). We do not attempt to model any aspects of vagueness in this
paper, though we acknowledge that it is a central concern in linguistic meaning
and a significant challenge for learning.

3 Themes

Our two players, compositionality and learning, were born to different fields
and have historically been driven by divergent goals. We now review these two
concepts, keeping to a standard treatment, but also noting their complementary
perspective on semantics. These perspectives are synthesized in section 4.

3.1 Compositionality

The principle of compositionality states that the meaning of a complex syntactic
phrase is a function of the meanings of its parts and their mode of combination
(Katz & Fodor 1963; Montague 1974; Partee 1984; Janssen 1997; Werning et al.
2012). In this general form, the principle has little power to force theoretical de-
cisions, since it grants near total freedom concerning the syntax, the meanings,
and the modes of semantic combination, and so attempts have been made to
formalize it precisely and substantively (for discussion, see Janssen 1997; Dowty
2007; Szabó 2012). However, even given informally, the principle provides valu-
able guidance. And, indeed, compositionality is arguably the central principle
of linguistic semantics, shaping all discussions about lexical meaning, the rela-
tionship between syntax and semantics, and other foundational concepts.
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Intuitively, compositionality outlines a recursive interpretation process in
which the lexical items are listed as base cases and the recursive clauses define
the modes of combination. Current theories assume that the modes of combi-
nation are few and highly general, which places essentially all of the complexity
in the lexicon (Klein & Sag 1985). This design is evident in our grammar (ta-
ble 1): the lexical items take up most of the space and encode, in their logical
forms and denotations, the ways in which they can combine with other terms.
The final two lines of the grammar define the modes of combination, both of
which amount to functional application between denotations. Wider-coverage
grammars contain lexical meanings that are more complex, and they might also
postulate additional modes of combination, but the guiding ideas are the same.

Compositionality is central to characterizing the ways in which small changes
to a syntactic structure can yield profound changes in meaning. For instance,
“two minus three” and “three minus two” contain the same words but lead to
different denotations. The grammar gives a precise account of how this inter-
pretive consequence follows from the syntax of the two utterances. Similarly, we
saw that “minus three plus one” (table 2, line B) is consistent with two parses.
Where the immediate parts in the syntax are “minus” and “three plus one”, the
subconstituent (+ 3 1) resolves to the denotation 4, and J¬K takes this as an
argument to produce J¬K(4) = −4. In contrast, where the immediate parts are
“minus three”, “plus”, and “one”, J¬K operates on 3, which affects the rest of
the computation in predictable ways to deliver the denotation −2. This is just
a glimpse of the subtlety of natural language, where the superficially least con-
tentful words (“every”, “no”, “not”, “might”, “but”, etc.) often drive the most
dramatic effects depending on where they appear in the constituent structure,
which determines what their corresponding semantic arguments are.

Compositionality is often linked to our ability to produce and interpret novel
utterances. While it is too strong to say that compositionality is necessary or
sufficient for this kind of creative ability, it does help characterize it: once one
has acquired the syntax of the language, memorized all the lexical meanings, and
mastered the few modes of composition, one can interpret novel combinations
of them. This abstract capacity is at the heart of what computational models
of semantics would like to learn, so that they too can efficiently interpret novel
combinations of words and phrases.

3.2 Learning

In statistics and artificial intelligence, machine learning concerns the ability to
generalize from a set of past observations or experiences in a way that leads
to improved performance on a future task (Mitchell 1997: §1). For example,
an artificial agent might be said to learn (even master) the game of checkers
by repeatedly playing games in which it chooses moves, observes the effects of
those choices on the game’s outcome, and adjusts its future choices in a way that
favors wins (Samuel 1959, 1967). Or an email server might learn to distinguish
genuine email from spam by observing lots of messages of each kind in order to
identify criteria for classifying them along this dimension.
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Feature representations φ(x, y)

(x, y) ‘empty string’ ‘last word’ ‘all words’

Train

(twenty five, O) ε five [twenty, five]
(thirty one, O) ε eight [thirty, one]
(forty nine, O) ε nine [forty, nine]
(fifty two, E) ε two [fifty, two]
(eighty two, E) ε two [eighty, two]
(eighty four, E) ε four [eighty, four]
(eighty six, E) ε six [eighty, six]

Test (eighty five, O) ε→ E five→ O [eighty, five]→ E

Table 3: Tradeoffs in machine learning. If our representation is too coarse
(‘empty string’), we ignore useful information. If our representation is too de-
tailed (‘all words’), we risk overfitting to the training data, especially where
there is not much of it. The key is to strike a good balance, as in ‘last word’.

We focus on supervised learning, where the experiences take the form of
pairs (x, y) called training examples. Here, x ∈ X is the system’s input and
y ∈ Y is the desired output. In computational linguistics, x could be a sentence
and y the syntactic parse of x; or x could be a Japanese sentence and y its Swahili
translation; or x could be a description and y its referent in the world; and so
forth. Such systems are evaluated on their ability to generalize. Specifically,
given a new (possibly unseen) test example (x, y), the system observes x and
makes a prediction ŷ(x). This incurs a cost c(y, ŷ(x)), which is typically 0 if the
prediction is correct (ŷ(x) = y) and 1 otherwise (ŷ(x) 6= y).

A machine learning system has three integral pieces: (i) a feature repre-
sentation of the data, (ii) an objective function (which usually corresponds to
minimizing error on training examples), and (iii) an algorithm for optimizing
the objective function. For concreteness, we now develop each of these pieces
within the paradigm of linear classification, which is the bread and butter of
statistical natural language processing (Manning & Schütze 1999; Smith 2011).

Arguably the most important part of machine learning is determining a
suitable representation of the data. The key idea in linear classification is to map
each input–output pair (x, y) to a d-dimensional feature vector φ(x, y) ∈ Rd,
where each coordinate φ(x, y)i represents something about y or its relationship
to x. The illustrative example in table 3 helps to convey why features are
crucial. The task is to learn whether a string describing a number (e.g., “thirty
five”) denotes an odd or even number (Y = {E, O}). The ‘empty string’ column
represents one extreme end of the spectrum, where we trivially represent all
inputs as the same. In this case, the learning system can do no better than
guessing the majority class label in its training examples, thereby ignoring a
lot of useful information. Near the other end of the spectrum is the ‘all words’
representation, which splits its input into words and uses all of them as features.
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This representation does poorly because it is misled by its small set of training
examples, in which “eighty” occurs only in E examples (although with a larger
training set, this representation would be fine). In the happier middle for our
problem and available data lies the ‘last word’ model, which captures the essence
of the task and so is able to perform perfectly. Of course, in more realistic
settings, finding the right representation is more challenging, requiring machine
learning expertise, domain expertise, and gumption (Domingos 2012).

The next piece involves defining the learning goal in terms of an objective
function and associated scoring function. For scoring, we associate each
feature j with a real-valued weight wj , intuitively representing how informative
(positive or negative) feature j is. The scoring function itself then assigns a value
to any (x, y) pair computing a weighted sum over the features — specifically,
the inner product of φ(x, y) and w:

Scorew(x, y) = w · φ(x, y) =

d∑
j=1

wjφ(x, y)j . (1)

With this scoring function, given any new input x, we simply predict the output
with the highest score: ŷ(x) = arg maxy∈Y Scorew(x, y).

The goal of training is to take a set of examples D consisting of input–output
pairs (x, y) and optimize the weights w so that the score of the correct output
y is generally larger than the score of incorrect outputs y′ ∈ Y\{y}. There
are many suitable objective functions for the problem we address here. For
concreteness, we use the multiclass hinge loss objective (Taskar et al. 2003):

min
w∈Rd

∑
(x,y)∈D

max
y′∈Y

[Scorew(x, y′) + c(y, y′)]− Scorew(x, y), (2)

where D is a set of (x, y) training examples and c(y, y′) is the cost for predicting
y′ when the correct output is y. Usually, c(y, y′) = 0 if y = y′, and 1 otherwise.
In words, we are trying to find the best weight vector w that minimizes the
cumulative loss over all training examples D. To understand the loss on a single
(x, y) pair, first note that the loss is zero when the score of the correct output
(Scorew(x, y)) exceeds that of any incorrect output (Scorew(x, y′) for y′ 6= y)
by at least c(y, y′) = 1. Otherwise, we pay linearly in the amount by which the
former falls short of the latter.

The final piece of learning is optimization (Boyd & Vandenberghe 2004).
There are many ways of solving the optimization problem defined by our objec-
tive function (2). One simple method is stochastic gradient descent (SGD),
which iteratively computes the (sub)gradient of a single term of the optimiza-
tion problem. The full algorithm is stated in figure 1 in terms of our feature
representations, scoring function, and objective function. For each training ex-
ample (x, y) ∈ D, SGD make a prediction for it (line 4), giving a boost of c(y, y′)
to incorrect y′. Where the prediction is correct (i.e., ỹ = y), the update does
nothing because the difference in line 5 is 0. Where the prediction is incorrect,
the update adjusts the weights in the direction of the correct answer φ(x, y) and
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away from the incorrectly predicted answer φ(x, ỹ). The parameter η controls
the size of these adjustments. SGD and its variants are widely used in prac-
tice because it is guaranteed to converge (under some technical conditions), is
straightforward to implement, and scales to large datasets (Bottou 2010).

StochasticGradientDescent(D, T, η)

D: a set of training examples (x, y) ∈ (X × Y)
T : the number of passes to make through the data
η > 0: learning rate (e.g., 1√

T
)

1 Initialize w← 0
2 Repeat T times
3 for each (x, y) ∈ D (in random order)
4 ỹ ← arg maxy′∈Y Scorew(x, y′) + c(y, y′)
5 w← w + η(φ(x, y)− φ(x, ỹ))
6 Return w

Figure 1: The stochastic gradient descent (SGD) optimization algorithm.

4 Synthesis

Thus far, we have allowed compositionality and learning to each tell its own story
of generalization and productivity. We now show that the two are intimately
related. Both concern the ability of a system (human or artificial) to generalize
from a finite set of experiences to a creative capacity, and to come to grips with
new inputs and experiences effectively. From this perspective, compositionality
is a claim about the nature of this ability when it comes to linguistic interpre-
tation, and learning theory offers a framework for characterizing the conditions
under which a system can attain this ability in principle. Moreover, establish-
ing the relationship between compositionality and learning provides a recipe
for synthesis: the principle of compositionality guides researchers on specific
model structures, and machine learning provides them with a set of methods
for training such models in practice.

More specifically, the claim of compositionality is that being a semantic in-
terpreter for a language L amounts to mastering the syntax of L, the lexical
meanings of L, and the modes of semantic combination for L. This also suggests
the outlines of a learning task. The theories sketched above suggest a number
of ways of refining this task in terms of the triples 〈u, s, d〉. We discuss two in
detail. The pure semantic parsing task (section 4.1) is to learn an accurate
mapping from utterances u to logical forms s. The interpretation task (sec-
tion 4.2) is to learn an accurate mapping from utterances u to denotations d
via latent semantic representations, in effect combining semantic parsing and
interpretation.

Throughout our review of the two tasks, we rely on the small illustrative
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example in figure 2. The figure is based around the utterance “two times two
plus three”. Candidate semantic representations are given in row (a). The
middle candidate y2 contains a lexical pairing that is illicit in the true, target
grammar (table 1). This candidate is a glimpse into the unfettered space of
logical forms that our learning algorithm needs to explore. Our feature vector
counts lexical pairings and inspects the root-level operator, as summarized in
the boxes immediately below each candidate. Row (b) of figure 2 describes how
the semantic parsing model operates on these candidates, and row (c) does the
same for the interpretation model. The next two subsections describe these
processes in detail.

4.1 Learning from logical forms

Semantic parsing is the task of mapping from sentences in X to logical forms
in Y. Early work on this task was purely logical (Woods et al. 1972; War-
ren & Pereira 1982), but statistical methods, pioneered by Zelle & Mooney
(1996), Thompson & Mooney (2003), Tang & Mooney (2001), and Zettlemoyer
& Collins (2005), have become prevalent over the last twenty years. On our sim-
plified construal, where each logical form is a full tree structure, as in figure 2a,
semantic parsing can be treated as an application of the general learning frame-
work we presented in section 3.2. However, it poses special challenges relating to
the fact that the space of outputs is an infinite set. Successfully addressing these
challenges involves integrating insights about compositionality into the learning
model. In particular, we rely on the grammar to define a function GEN(x) ⊂ Y
specifying a finite space of outputs for each input utterance x.

Let us revisit our running arithmetic example. At some level, the goal of
learning is to infer the true grammar rules (table 1) from data. To keep things
manageable, we assume that the two modes of combination (given in the final
two rows of table 1) are already known and that the basic format of the lexical
rules is given as ‘a→ b : c’, where a is a pre-terminal symbol, b is a word com-
patible with a, and c is a logical form. This facilitates simultaneous learning of
the syntactic category of b and (more importantly for us) the lexical translation
relation between b and c. In essence, with these two assumptions, the central
challenge of learning is lexical in nature. This coincides with the assumption,
discussed in section 3.1, that the heart of a grammar is in its lexicon, though, of
course, in the end we obtain not a set of rules but a weight vector that encodes
lexical, grammatical, and even pragmatic preferences in a soft way.

At the start, we create a crude grammar that overgenerates. What is impor-
tant at this point is that (i) the grammar is extremely simple to specify manually
and (ii) the set of candidates GEN(x) is likely to contain the correct logical form
y. To meet these two conditions, we add rules of the form ‘N → b : c’ for all
choices of b and c. Some of these will be correct (e.g., ‘N→ one : 1’) but many
more will be incorrect (e.g., ‘N→ one : 2’). The absurdity of this grammar may
be evident to us as competent users of language, but such judgments are pre-
cisely the knowledge we want our system to learn from data. Next, we define a
feature vector φ(x, y). The hope is that, upon examining the training data, the
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(a) Candidates GEN(x) for utterance x = two times two plus three

y1 y2 y3

N:(+ (× 2 2) 3) ⇒ 7

N:(× 2 2)

N:2

two

R:×

times

N:2

two

R:+

plus

N:3

three

N:(+ (+ 2 2) 3) ⇒ 7

N:(+ 2 2)

N:2

two

R:+

times

N:2

two

R:+

plus

N:3

three

N:(× 2 (+ 2 3)) ⇒ 10

N:2

two

R:×

times

N:(+ 2 3)

N:2

two

R:+

plus

N:3

three

φ(x, y1) =
R:×[times] : 1

R:+[plus] : 1

top[R:+] : 1

φ(x, y2) =
R:+[times] : 1

R:+[plus] : 1

top[R:+] : 1

φ(x, y3) =
R:×[times] : 1

R:+[plus] : 1

top[R:×] : 1

(b) Learning from logical forms (Section 4.1)

w =

R:×[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 0

top[R:×] : 0

Scores: [0, 0, 0]

y = y1

ỹ = y3 (tied with y2)

⇒ w =

R:×[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 1

top[R:×] : -1

Scores: [1, 1,−1]
y = y1

ỹ = y2 (tied with y1)

⇒ w =

R:×[times] : 1

R:+[times] : -1

R:+[plus] : 0

top[R:+] : 1

top[R:×] : -1

Scores: [2, 0, 0]

y = y1

ỹ = y1

Iteration 1 Iteration 2 Iteration 3

(c) Learning from denotations (Section 4.2)

w =

R:×[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 0

top[R:×] : 0

Scores: [0, 0, 0]

GEN(x, d) = {y1, y2}
y = y1 (tied with y2)

ỹ = y3 (tied with y2)

⇒ w =

R:×[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 1

top[R:×] : -1

Scores: [1, 1,−1]
GEN(x, d) = {y1, y2}
y = y1 (tied with y2)

ỹ = y1 (tied with y2)

Iteration 1 Iteration 2

Figure 2: Learning algorithms applied to one example. The utterance is “two
times two plus three”. In (b), we are given the target semantic representation
(+ (× 2 2) 3). In (c), we are given the target denotation 7. In (a), we show
the three candidates GEN(x) that the learning algorithm must decide among,
along with their features φ. For example, the first feature in y1 (‘R:×[times]’)
has value 1, and says that times was mapped to R:×; the last feature ‘top[R:+]’
says that the topmost R is a +. The feature weights start at all zero; we compute
the scores for each of the three candidates (Scorew(x, yi) = w ·φ(x, yi)). Either
the target y is provided or, if only the denotation d is given, we choose the
highest scoring y that has denotation d: y = arg maxy′∈GEN(x,d) Scorew(x, y′).
The prediction ỹ = arg maxy′∈GEN(x) Scorew(x, y′) + c(y, y′) is the highest score
(augmented with the cost, which is 1 for y′ 6= y and 0 otherwise). Finally, a
weight update is made: w← w+η(φ(x, y)−φ(x, ỹ)) with η = 1. The algorithm
terminates in this example when y = ỹ. From logical forms, we eventually
predict the correct answer y1. From denotations, we end up predicting either
y1 or y2, which both have denotation d. With more diverse examples, we would
be able to favor y1.

11

-----------

-----------



bad features φ(x, y)i will receive low weight, which suppresses some candidates
and, in turn, refines GEN(x) in a soft way. To achieve this within our learning
framework (section 3.2), we modify the objective function (2) by replacing all
possible logical forms Y with those generated by the crude grammar GEN(x).
(Other methods are based in log-linear models; for simplicity, we stick to our
earlier paradigm.)

Figure 2 shows how learning proceeds in concrete terms, using a small exam-
ple from our grammar. The input x is “two times two plus three”, and our target
logical form is y1. Due to space constraints, we define the candidate set to be
GEN(x) = {y1, y2, y3}; in reality, even our simple grammar generates more pos-
sibilities. The feature vector for each candidate logical form is given in a box
immediately below it. The features are mostly lexical ones like ‘R:×[times]’,
which count the number of times that the rule was used to construct the logical
form, but there is also a class of structural features ‘top[R:r]’, which has value
1 if there is a topmost relation and it has logical form r, otherwise 0. Figure 2b
depicts two iterations of SGD (figure 1). After one iteration, y3 has fallen be-
hind because of its root-level relation symbol, leaving y1 and y2 tied. After two
iterations, our target y1 has pulled ahead. By that stage, the incorrect lexical
rule ‘R → times : ×’ used to construct y2 has been assigned negative weight,
pulling y2 down.

From the perspective of linguistic theory, the learning framework above rep-
resents an important shift in philosophy. Whereas full-fledged grammars like
table 1 depend on the analyst to precisely define the right set of mappings from
syntax to logical form, learning shifts some of this burden to the data and feature
representations. In this setting, given enough representative training data, the
analyst would need to define only the structural aspects of the grammar, leaving
the lexical aspects to learning. In practice, the distinction is more blurred. For
the most part, learning-based theories have assumed that lexical items like in-
terrogative pronouns, quantificational determiners, and logical connectives are
fixed, so that learning focuses on open-class lexical items. The long-term trends
for this division of labor are hard to forecast, but we expect to increasingly see
models that are able to learn these more abstract corners of the lexicon as well,
since defining richer views of the lexicon has been a major focus of recent work
(Wong & Mooney 2007; Kwiatkowski et al. 2011).

For the sake of concreteness, we incorporated a number of simplifying as-
sumptions into the example represented by figure 2. The models presented in
the literature tend to be considerably more complex along a number of dimen-
sions. We mention two here. First, in our model, we observe the entire logical
form tree structure. In contrast, for Zettlemoyer & Collins (2005) and related
approaches, only the final logical expression on the root node of those trees is
observed, with the tree structure (the derivational path to the root) treated as
a latent variable. This corresponds to a reduction in the amount of information
available to the model, thereby deepening the learning challenge. Second, in our
model, we seek to learn only the lexicon. However, the lexicon is not all there is
to compositionality. Though we might seek to minimize the complexity of the
modes of combination, they will always be needed for the structures attested in
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language. More ambitious versions of the above model do indeed seek to learn
these modes of combination, using largely the same technique as we employed
above for the lexicon: hypothesize a wide range of potential modes of combina-
tion and rely on the data to learn preferences regarding which modes to retain
in the learned grammar (Zettlemoyer & Collins 2007).

While the crude grammar and data provide an appealing division of labor
between manual effort and learning, the approach does present significant com-
putational challenges, stemming from the fact that the number of candidate
logical forms GEN(x) is in general exponential in the length of the sentence.
For example, in our simple grammar, even with just nine atomic numerical ex-
pressions to consider, the number of logical forms for the short utterance “two
times two plus tree” is 93 × 52 × 2 = 36, 450. The issue can be mitigated some-
what by dynamic programming algorithms for parsing. In syntactic parsing, for
example, such algorithms can find the highest scoring parse for each contiguous
span of the utterance given a syntactic category, building on previously optimal
steps as they go and thus never exploring large numbers of suboptimal choices.
In semantic parsing, however, each subproblem needs to be parametrized, not
just by the syntactic category, but also by the entire logical form. To address
this, beam search approximations are typically employed, where only k parses
are stored for each span across all logical forms. Zettlemoyer & Collins (2005,
2007) take further steps towards reducing the size of the candidate space by gen-
erating the crude grammar on the fly: for each example (x, y), their algorithm
maps each word in the utterance x to each predicate in the logical form y. This
keeps the grammar small, which in turn helps tame GEN(x). More could be
said on the complexity issues surrounding these approaches; the above remarks
are meant only to emphasize that complexity can often be a formidable barrier
that requires algorithmic ingenuity and solid engineering to break down.

4.2 Learning from denotations

Arguably the major shortcoming of semantic parsing is that it leaves the task
of interpretation — of associating utterances with their denotations — outside
of the learning model itself. We turn now to the interpretation task, where
we learn from denotations directly, using logical forms only as intermediate,
hidden representations along the way. This is a more realistic portrayal of
human language acquisition and is also advantageous from the point of view of
developing artificial systems.

In the interpretation task, the training instances are utterance–denotation
pairs (x, d), and the logical forms y are not observed. This requires a reformu-
lation of our objective function (2). We use a latent support vector machine
objective (Yu & Joachims 2009):

min
w∈Rd

∑
(x,d)∈D

max
y′∈GEN(x)

[Scorew(x, y′) + c(y, y′)]− max
y∈GEN(x,d)

Scorew(x, y), (3)

where GEN(x, d) = {y ∈ GEN(x) : JyK = d} is the set of logical forms that eval-
uate to denotation d. The only change from (2) is that the score of the correct
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logical form y has been replaced with the maximum score over all logical forms
y ∈ GEN(x, d) that have the correct denotation.

As before, we can apply SGD to this objective. The only modification from
figure 1 is that the inner for-loop is now over pairs (x, d), and thus the correct
logical form y is no longer given. Rather, y is chosen to be the member of
GEN(x, d) with the highest score (thus, y might change as learning progresses).
Figure 2c walks through the first steps of this optimization process. The input
is x = “two times two plus three”, and the output is d = 7. Thus, GEN(x, d) =
{y1, y2}; the logical form y3 has an incompatible denotation. In this simple
example, the model cannot distinguish between y1 and y2, since both have
identical denotations. Of course, with additional diverse examples, we could
resolve this uncertainty; the purpose of this illustration is to highlight the loss
of information due to learning directly from denotations.

Figure 2 also highlights the subservient role that logical forms play in the
interpretation task. We do not observe them in training nor do we evaluate the
model in terms of their accuracy. As far as the interpretation task is concerned,
the model in figure 2 performs perfectly on this example, even if it is for the
“wrong reason”. If we only ever saw “plus” in the context of “two” and “two”,
then we would be forever blissfully indifferent to the choice of y1 and y2. More
realistically, if we later received examples with other arguments, then we would
be able to break the symmetry and favor y1.

Learning from denotations is more difficult than learning from logical forms,
not only information-theoretically, but also computationally. When learning
from logical forms, we could constrain the lexicon by including a word–predicate
pair only if it occurs in our training data. Without logical forms, naively, we
would have to pay the full the price of having a completely uninformed lexicon
that includes all possible word–predicate pairs. Computationally, this is only
feasible in the simplest scenarios. To manage the computational complexity,
we combine two key ideas: (i) using type information and (ii) controlling the
order in which logical forms are built (Liang et al. 2011, 2013; Berant & Liang
2014). We assume that we have the lexical entries for a set of “easy” words (e.g.,
“one” → 1), but we do not have lexical entries for others (e.g., “plus”). As a
simple example, consider the sentence “one plus two”. Rather than guessing
all possible predicates for “plus”, we can first parse “one” into 1 and “two”
into 2 (this part could be non-deterministic). Now, we can restrict the search
to relational predicates. On the toy arithmetic domain, the gains would be
minimal, but in problems involving large-scale question-answering databases
and complex language, it can facilitate vast reductions in the candidate space.

On the positive side, there is one sense in which denotations provide more
information than logical forms alone: we can define features on denotations. For
example, suppose that, at test time, we are given the phrase “the father of Daniel
Bernoulli” and the two candidate logical forms father(DanielBernoulli) and
daughter(DanielBernoulli). When we interpret each in our model, the first
yields {Jakob Bernoulli} and the second yields the empty set. We could define
a feature and learn its associated weight to favor logical forms in which the
complement to “the” has denotation with cardinality 1, thus favoring the first
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choice in this case.
These ideas are developed in detail by Liang et al. (2011, 2013) using depen-

dency representations that can contain a wide range of quantificational operators
and can even model scope ambiguities of the sort we discussed briefly in sec-
tion 2.2. These models match the accuracies obtained by learning from logical
forms. What’s more, since denotations (or good proxies for them) are abundant
in naturally occurring data in a way that logical forms are not, these models
hold the promise of being applicable in a wide range of domains with little need
for laborious annotation. This promise is beginning to be realized in practice
(Berant et al. 2013; Berant & Liang 2014; Kwiatkowski et al. 2013).

4.3 Extensions

We presented only skeletal versions of the above theories, but we sought to cap-
ture the essential spirit of the synthesis between learning and compositionality.
Over the last decade, the computational community has been expounding on
variants of these ideas and actively applying them to a number of different areas.
In this brief section, we hope to convey the richness and diversity of this work
and to provide references for the interested reader.

One of the great strengths of learning-based approaches is how easily they
can be adapted to new settings — both in terms of languages and in terms of
discourse domains. The high-level paradigm is as follows: the feature represen-
tations and learning algorithm are language- and domain-independent, creat-
ing a vessel. The crude grammar and data fill the vessel with language- and
domain-dependent information. This paradigm has been realized successfully
in practice. Much early statistical work in semantic parsing (Zettlemoyer &
Collins 2005, 2007; Ge & Mooney 2005; Kate et al. 2005; Kate & Mooney 2006;
Wong & Mooney 2006, 2007; Lu et al. 2008) focused on mapping questions
to structured database queries in the domains of US geography (Geo880; Zelle
& Mooney 1996), job postings (Jobs640; Tang & Mooney 2001), and ATIS air
travel planning (Zettlemoyer & Collins 2007). Matuszek et al. (2012b) show that
essentially the same model can learn to map instructions to a robot’s program-
ming language, thereby allowing a user to guide the robot around a building.
Cai & Yates (2013) learn models for question-answering on Freebase (Bollacker
et al. 2008) across 81 different domains. Finally, Kwiatkowksi et al. (2010) and
Kwiatkowski et al. (2011) learn semantic parsers across four languages (English,
Spanish, Turkish, and Japanese).

Another major theme that arose from section 4.2 is the importance of learn-
ing from denotations — more generally, connecting language with the world.
Many authors have considered this setting using a variety of intermediate se-
mantic representations. Applications include querying databases (Clarke et al.
2010; Liang et al. 2011; Berant et al. 2013; Kwiatkowski et al. 2013), interpret-
ing natural language for performing programming tasks (Kushman & Barzilay
2013; Lei et al. 2013), playing computer games (Branavan et al. 2010, 2011),
following navigational instructions (Vogel & Jurafsky 2010; Chen 2012; Artzi &
Zettlemoyer 2013), implementing dialogue systems (Artzi & Zettlemoyer 2011),
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and interacting in the real world via perception (Matuszek et al. 2012a; Tellex
et al. 2011; Krishnamurthy & Kollar 2013). The trend clearly points toward
incorporating more compositionality into these applications.

5 Distributed representations

We have so far concentrated on semantic representations that are logical forms.
We now introduce an alternative perspective on which semantic representations
are distributed representations — vectors and matrices. Their real-valued
nature provides a foundation for representing shades of meaning and, with work,
they can encode the same kinds of information as logical forms. Due to space
limitations, our discussion is brief, meant only to convey the general ideas and
provide connections with the vibrant literature.

For concreteness, we structure our discussion around a small example in-
volving adjectival modification (Mitchell & Lapata 2010), adapted from propo-
sitional logic cases analyzed by Rumelhart et al. (1986a). Table 4 presents the
grammar. The semantic representations for nouns are three-dimensional col-
umn vectors. (We write them as transposed row vectors to save space; a> is the
transpose of a.) As an informal aid to understanding, one can think of the first
dimension as encoding concreteness and the second as encoding interactivity.
The third is just a bias term that is always 1. Our single adjective “unpre-
dictable” is represented as a 3 × 3 matrix, in analogy with adjectives denoting
functions on noun-type meanings in logical approaches.

Syntax Representation

N → rollercoaster [1.0 1.0 1.0]
>

N → airplane [1.0 0.0 1.0]
>

N → website [0.0 1.0 1.0]
>

N → movie [0.0 0.0 1.0]
>

A → unpredictable


−6.3 −6.3 2.5

−4.4 −4.4 6.5

0.0 0.0 1.0


N → A N σ(pAqpNq)

(a) Grammar.

d d = JyK = σ(δy)

δ = [9.0 −8.8 5.6]

y1 y2 y3 y = σ(pAqpNq)

pAq

n1 n2 n3 pNq

(b) Composition via a neural network.

Table 4: Grammar for distributed representations.

The entire compositional computation of the denotation (table 4b) can be
described as a two-layer neural network. The inputs to the network are the
noun vectors. This vector is multiplied by the adjective representation pAq; the
arrows represent the dense connections between the coordinates of the input and
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output vectors. The result is another vector representation (pAqpNq), which is
passed to the sigmoid function (σ(z) = (1+e−z)−1), which monotonically trans-
forms each coordinate into a value in the interval [0, 1]. (The non-linear nature
of this function is also key to the model’s representational power.) The result is
a modified-noun representation y in the same space (of the same semantic type)
as the input noun, so it could be further modified, just as one would expect
from a compositional theory.

The second layer of the neural network maps the modified-noun represen-
tation to its denotation d = JyK, which is just a single value in [0, 1]. The
weights on this layer are δ, which parametrize the interpretation function ac-
cording to JyK = σ(δy). In our example, this can be thought of as an evaluative
denotation, with values near 1 being positive and values near 0 being negative.
This is a very limited denotation, but it suffices for illustrative purposes, and
networks like these can have multi-dimensional output labels encoding lots of
different kinds of information; in terms of the network structure, this just means
changing δ into a matrix.

Our guiding semantic intuition is that the evaluative sense of an adjective
like “unpredictable” is influenced by the noun it modifies (Partee 1995). An
“unpredictable rollercoaster” and “unpredictable movie” are evaluatively posi-
tive (denotation near 1), whereas “unpredictable airplane” and “unpredictable
website” are evaluatively negative (denotation near 0). Figure 3 summarizes
how modification works in this theory to capture these intuitions. The lexical
noun vectors are given in the two-dimensional space (the third dimension is
always 1). The arrows depict the action of our composition function, which
maps the noun meanings into different parts of the space as a result of their
adjectival modification. In this case, the network brought the negative phrases
to the same vector and more or less swapped the positions of the two positive
phrases. (Other vectors of the adjective will have different effects but lead to
similar groupings.) The colors reflect the final output denotation, with blue
indicating a denotation near 1 and red indicating a denotation near 0.

[0,1] [1,1]

[1,0][0,0]

website rollercoaster

airplanemovie

unpredictable
website

[0,0.09]

unpredictable
rollercoaster

[0.02,0.89]
unpredictable

airplane

[0.92,1]
unpredictable
movie

Figure 3: Modification by “unpredictable” using the grammar in table 4. Blue
indicates positive denotations, red negative ones.
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The goal of learning is to obtain the parameters, which consist of the inter-
pretation vector δ and the semantic representations in table 4a. We limit atten-
tion here to learning the matrix representation of the adjective punpredictableq,
taking the noun vectors as given. Table 5 shows our training examples (x, d),
where each x decomposes into an adjective–noun pair (a, n). We can apply
the standard supervised learning task (section 3.2). Given parameters, our pre-
dicted denotation is d̃ = σ(δ σ(paqpnq)). The objective function is to choose
parameters that minimize the cross-entropy of the observed denotation d and
the predicted denotation d̃:

min
δ∈R3,punpredictableq∈R3×3

∑
(x,d)∈D

−
(
d log d̃+ (1− d) log(1− d̃)

)
. (4)

To optimize this objective, we apply stochastic gradient descent as before. For
neural networks, computing the gradients involves repeatedly applying the chain
rule, and the classic backpropagation algorithm provides a way to organize
this computation (Rumelhart et al. 1986a,b). We initialize punpredictableq
and δ with small, normally distributed random values. For each given input
((a, n), d), where (a, n) is a phrase and d is one of the scalar sentiment deno-
tations in table 5, the algorithm computes the representation ỹ and denotation
d̃ (forward propagation). This prediction is compared with the actual value d,
and the resulting error signal is sent back through the network, which modifies
δ and punpredictableq to try to make the network’s predictions more accurate
(backward propagation).

Phrase x = (a, n) Denotation d

unpredictable rollercoaster 1
unpredictable airplane 0
unpredictable website 0
unpredictable movie 1

Table 5: Training data used to learn the parameters punpredictableq and δ.

Vector-based representations trace historically to early distributional ap-
proaches to language (Firth 1935; Harris 1954), on which meanings (and other
linguistic properties) are characterized entirely by co-occurrence statistics in
corpora. However, as our example shows, modern versions of this idea allow
that the counts might represent considerably more abstract information relat-
ing not only to co-occurrence at different levels of analysis but also associations
with language-external denotations and even logical relationships familiar from
work involving logical forms (Clark et al. 2011). In more complex models, words
are represented not just by vectors but also by matrices and higher-dimensional
tensors, which creates the possibility for richer modes of semantic combination.
For a review of proposals that can be cast as elaborations of the above, see
Socher et al. 2013b: §4.
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In practice, distributed representations typically encode not just semantic
information, but also a mix of morphological, syntactic, and semantic associa-
tions (Turney & Pantel 2010; Grefenstette et al. 2011; Lewis & Steedman 2013).
Supervised training of distributed representations has, in turn, proven helpful
for a variety of problems, including syntactic parsing (Socher et al. 2013a),
part-of-speech tagging, named entity recognition, noun phrase chunking, and
semantic role labeling (Collobert & Weston 2008; Collobert et al. 2011).

To date, these models have been applied only to narrow aspects of the full
task of semantic interpretation, with the bulk of the work going to sentiment
analysis, where the denotations can modeled by a small set of categories or
values in a predefined numerical range, as we did above (Socher et al. 2011b,
2012, 2013b). Bowman (2014) reports on experiments assessing how well these
models do at capturing core semantic properties related to entailment and con-
tradiction, and Socher et al. (2011a) obtain successful results on the related task
of paraphrase detection (a kind of synonymy); see also Baroni et al. 2012 for
work on entailment and compositionality with distributional representations.
At present, one of the most exciting open questions in computational semantics
is what kind of data and models will be needed to operate on richer denotation
domains.

6 Conclusion

Within computational semantics, logical and statistical approaches are often
regarded as separate. Luckily, this seems not to stem from the kind of rough
and tumble history that Pereira (2000) describes for syntax, but rather from
a perception that the two groups are working on different things. With this
paper, we sought unity around the notion of generalization as it pertains to
meaning and structural complexity. Intuitively, the compositionality hypothesis
defines a learning task in which the goal is to acquire mappings between forms
and meanings that will be effective with new, arbitrarily complex structures. A
great deal of recent work has identified methods for solving this problem. We
presented a simple framework, combining discriminative learning with formal
grammar, but this is just a glimpse into this thriving area of investigation. For
linguists, we hope this review provides a fruitful new perspective on the nature
and acquisition of grammar and meaning; for computer scientists, we hope it
reveals new ways in which linguistic insights and concepts can support more
robust natural language technologies and define richer learning problems.
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